Amorphous V2O5 powders with zirconia (ZrO2) dopant are prepared by one-pot spray pyrolysis at temperatures above the melting temperature of V2O5. The powders with 7 wt % ZrO2 are completely spherical and dense with a clean surface, on which crystals of pure V2O5 powders are scarcely observed. The V2O5 powders with 7 wt % ZrO2 have uniformly distributed V and Zr components. The uniformly distributed Zr component disturbs the crystallization of V2O5 during the quenching of the melted powders. These powders also give smooth initial discharge curves with a single slope, which is typical to amorphous materials. The discharge capacities of the V2O5 powders with 7 wt % ZrO2 are 309, 269, and 222 mA h g(-1) after the first, second, and 50th cycles, respectively, even at a high current density of 294 mA g(-1). The capacity retention measured after the first cycle is 83% after 50 cycles.
The mesoporous undoped and Si-doped alumina were prepared with an ultrasonic spray process, and found to have well-developed mesopore structures and large surface areas. The mesoporous Si-doped alumina has a high thermal stability up to 1473 K. Its surface area and pore volume were found to slowly decrease with increasing temperature. Mesoporous undoped alumina is transformed to gamma-alumina at 1073 K, whereas the amorphous nature of the pore walls of the Si-doped alumina is maintained up to 1073 K. When heat treatment was carried out at 1473 K for 2 h, the mesopore-networks of the undoped alumina collapsed, and then all the pore walls were converted into the alpha-alumina phase. In contrast, the mesoporosity of the Si-doped alumina persisted during heat treatment, and its pore walls were transformed to gamma-alumina. The decreases in the pore volume of the undoped alumina at 1073 K and 1473 K were found to be 36% and 99% respectively, but for the Si-doped alumina were only 24% and 36% respectively. The surface area of the undoped alumina at 1473 K was found to be 11 m2/g but that of the Si-doped samples at the same temperature is higher than 100 m2/g. Thus this mesoporous Si-doped alumina can be used as a catalytic support in reactions at high temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.