Most currently available three-dimensional surface models of human anatomic structures have been artistically created to reflect the anatomy being portrayed. We have recently undertaken, as part of our Visible Korean studies, to build objective surface models based on cross-sectional images of actual human anatomy. Objective of the present study was to elaborate surface models of the GI tract and neighboring structures that are helpful to medical simulation. The GI tract from stomach to anal canal was outlined and reconstructed from sectioned images of the Visible Korean (acomputer database containing the digitized transverse sectional images of a 33-year-old Korean man). The outlining procedure was supported by computational filtering and interpolation using commercially available software. The GI tract was divided into several parts, and each of these parts was surface reconstructed and then united with neighboring parts to produce a surface model of the complete GI tract. Surface models of about 100 neighboring structures were also prepared. The surface models produced will hopefully facilitate the development of interactive simulations for a variety of virtual abdominal surgical procedures or other educational programs. In addition, it is hoped that the improved outlining and surface reconstruction techniques described will encourage other researchers to construct similar surface models based on images obtained from different subjects.
Unlike volume models, surface models, which are empty three-dimensional images, have small file size, so that they can be displayed, rotated, and modified in a real time. For the reason, the surface models of liver and neighboring structures can be effectively applied to virtual hepatic segmentectomy, virtual laparoscopic cholecystectomy, and so on. The purpose of this research is to present surface models of detailed structures inside and outside the liver, which promote medical simulation systems. Forty-seven chosen structures were liver structures such as portal triad, hepatic vein, and neighboring structures such as the stomach, duodenum, muscles, bones, and skin. The structures were outlined in the serially sectioned images from the Visible Korean Human to prepare segmented images. From the segmented images, serial outlines of each structure were stacked; on the popular commercial software, advanced surface reconstruction technique was applied to build surface model of the structure. A surface model of the liver was divided into eight models of hepatic segments according to distribution of the portal vein. The surface models will be distributed to encourage researchers to develop the various kinds of medical simulation of the abdomen.
The sectional anatomy of a cat head is essential when interpreting CTs and MRIs of the region. In learning the sectional anatomy, sectioned images of a cat could be quite effective data. The main objective was to assist veterinary physicians who learn the sectional anatomy of a cat head by presenting high-quality sectioned images. A short-haired female cat was frozen and sectioned frontally using a cryomacrotome. Every sectioned surface in real body color was photographed with a digital camera. The frontal planes were stacked to produce dorsal and sagittal planes. High-quality sectioned images of a cat head allowed the identification of small, complicated structures. The notable structures were as follows: each bone of the cranium, structures of the brain, tympanic cavity (larger than human), oval window (larger than human), vestibular nerve, cochlear nerve, ear ossicles, six extraocular muscles, pupil (larger than human), retractor bulbi muscle (not found in human), optic nerve, olfactory bulb (considerably large), vomeronasal organ duct (not found in human), infraorbital gland (not found in human), masticatory muscles (larger than human), maxillary nerve (larger than human), and mandibular nerve. This pacesetting report describes the detailed head structures of a cat from the viewpoint of sectional anatomy. The sectioned images will be given to other interested researchers free of charge.
LEE, S. B.; CHUNG, B.S.; CHUNG, M. S.; YOUN, C. & PARK, J. S.Browsing software of the head sectioned images for the Android mobile device. Int. J. Morphol., 35(4):1377Morphol., 35(4): -1382Morphol., 35(4): , 2017. SUMMARY:The purpose of this research was to enable anyone to learn the sectional anatomy of the head anywhere, anytime by presenting software to browse sectioned images on a Google Android mobile device. Among the 2,343 sectioned images at 0.1 mm intervals, 234 sectioned images at 1 mm intervals were chosen. The corresponding 234 segmented images containing 236 head structures were selected. The software of the mobile version was programmed and debugged in the Java programming language. The folders of the sectioned images and segmented images and the txt file of the segmentation data were arranged in the source code of the software. The software was distributed free of charge at the homepage (neuroanatomy.kr) and Google Play Store. After installing the software, the sectioned images and corresponding segmented images could be browsed by touching and swiping the screen. In the medical category of the Google Play Store, the software earned a good reputation. The software of the Android mobile version was usable regardless of the time and place. The software is under the authors' non-commercial policy. Other investigators may modify the mobile software to browse their own images. The mobile version of the software will aid medical students and doctors in learning sectional anatomy.
The Korean spine geometry and property data for researchers were made by KISTI and Catholic Institute for Applied Anatomy. We took whole spine CT, X-Ray, BMD scan for making high resolution cross-sectional spine images using more 20 donated cadavers(60 -80 years).Then we constructed 3-dimensional volume model using serial CT images by Mimics software.The major morphometric parameters of vertebrae were measured. Mechanical motion and property data were obtained by the same cadavers using the DEXA for BMD and the spine simulator. The Korean spine geometry and property data could be used for research and development of medical device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.