The application of a building-integrated photovoltaic (BIPV) module to an elevation means that the factors causing performance losses in a BIPV are relatively high compared to a photovoltaic (PV) that is installed at the optimal angle. Therefore, it is essential to evaluate the performance loss factors of BIPV and to examine the characteristics of each performance loss factor. Measured data were used to analyze the performance and loss factors (module temperature, dust and soiling, power conditioning system (PCS) standby mode, direct current–alternating current (DC-AC) conversion loss). A performance ratio of International Electrotechnical Commission (IEC) 61724 was used to power the generation performance analysis. The impact analysis of each loss factor is analyzed by using difference of the power generation, the module efficiency, irradiation, and the performance ratio according to the existence of a loss factor. The performance ratio analysis result of this BIPV system shows a range of 66.8–69.5%. The range of performance loss due to each loss factor was as follows; module temperature: 2.2–6.0%, dust and soiling: 2.2–23.1%, PCS standby loss: 4.9–15.7%, DC–AC conversion loss: 4.1–8.0%. Because the effects of the loss factors are different depending on the installation conditions, the performance loss of the system should be minimized by taking this into consideration in the design stage in the BIPV.
-The purpose of this paper studies the failure cases including with system of liquefied phase injection in liquified petroleum gas vehicle. The first case, resulting with inspection the injector of LPG, it occasionally certified the injection damage phenomenon that the fuel efficiency(km/ℓ) was decreased to 5% by carbon deposit with injector hole when the driver operates the vehicle. The second case, it certified the interference phenomenon of air flow with carbon deposit in ISA system control for idle speed of engine and throttle body suppling air into engine. As a result, the fuel efficiency was decreased 7%. The third case, the outer air during intake stroke was intermittently flowed in this gasket gap because of weaken adhesion power phenomenon for cylinder block by intake manifold gasket tearing. Consequentially, it certified the decrease for fuel efficiency to 3% by risen the amount of fuel injection as the air inflow quantity. These failure examples reduced the power performance of engine and the fuel efficiency of vehicle. It have to minimize of failure phenomenon preparing through quality management.
This study was initiated to minimize head injuries, which is the largest cause of increased external activity, traffic accident injuries, and death. We developed a low cost airbag that can be covered by a safety helmet based on consumer needs. The results of the survey showed that safety is the most important aspect of consumers' safety helmets. It also predicted that increasing the weight would present the biggest problem. Curved airbag cushion parts that can be attached to a helmet and the sensor part of a block type were designed. Impact analysis was performed by specifying the pressure inside the airbag and the volume of the airbag as variables.
This paper describes a intelligent control system for cruise driving vehicle. With the steady increase in the number of automobiles on the road, it has become ever more inportant to merge traffic flow efficiently to optimize utilization of existing road capacity. Based on the idea that minimize fuel cost air pollution and accept driver's need for drinving, we have developed a intelligent control system for cruise driving vehicle. The system with intelligent controller for cruise driving is fully implemented in a open road and verify its performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.