<p style='text-indent:20px;'>We examine a variety of numerical methods that arise when considering dynamical systems in the context of physics-based simulations of deformable objects. Such problems arise in various applications, including animation, robotics, control and fabrication. The goals and merits of suitable numerical algorithms for these applications are different from those of typical numerical analysis research in dynamical systems. Here the mathematical model is not fixed <i>a priori</i> but must be adjusted as necessary to capture the desired behaviour, with an emphasis on effectively producing lively animations of objects with complex geometries. Results are often judged by how realistic they appear to observers (by the "eye-norm") as well as by the efficacy of the numerical procedures employed. And yet, we show that with an adjusted view numerical analysis and applied mathematics can contribute significantly to the development of appropriate methods and their analysis in a variety of areas including finite element methods, stiff and highly oscillatory ODEs, model reduction, and constrained optimization.</p>
Physics-based simulation methods for deformable objects suffer limitations due to the conflicting requirements that are placed on them. The work horse semi-implicit (SI) backward Euler method is very stable and inexpensive, but it is also a blunt instrument. It applies heavy damping, which depends on the timestep, to all solution modes and not just to high-frequency ones. As such, it makes simulations less lively, potentially missing important animation details. At the other end of the scale, exponential methods (exponential Rosenbrock Euler (ERE)) are known to deliver good approximations to all modes, but they get prohibitively expensive and less stable for very stiff material. In this article, we devise a hybrid, semi-implicit method called SIERE that allows the previous methods SI and ERE to each perform what they are good at. To do this, we employ at each timestep a partial spectral decomposition, which picks the lower, leading modes, applying ERE in the corresponding subspace. The rest is handled (i.e., effectively damped out) by SI. No solution of nonlinear algebraic equations is required throughout the algorithm. We show that the resulting method produces simulations that are visually as good as those of the exponential method at a computational price that does not increase with stiffness, while displaying stability and damping with respect to the high-frequency modes. Furthermore, the phenomenon of occasional divergence of SI is avoided.
Simulation of human soft tissues in contact with their environment is essential in many fields, including visual effects and apparel design. Biological tissues are nearly incompressible. However, standard methods employ compressible elasticity models and achieve incompressibility indirectly by setting Poisson's ratio to be close to 0.5. This approach can produce results that are plausible qualitatively but inaccurate quantatively. This approach also causes numerical instabilities and locking in coarse discretizations or otherwise poses a prohibitive restriction on the size of the time step. We propose a novel approach to alleviate these issues by replacing indirect volume preservation using Poisson's ratios with direct enforcement of zonal volume constraints, while controlling fine-scale volumetric deformation through a cell-wise compression penalty. To increase realism, we propose an epidermis model to mimic the dramatically higher surface stiffness on real skinned bodies. We demonstrate that our method produces stable realistic deformations with precise volume preservation but without locking artifacts. Due to the volume preservation not being tied to mesh discretization, our method also allows a resolution consistent simulation of incompressible materials. Our method improves the stability of the standard neo-Hookean model and the general compression recovery in the Stable neo-Hookean model.
We examine a variety of numerical methods that arise when considering dynamical systems in the context of physics-based simulations of deformable objects. Such problems arise in various applications, including animation, robotics, control and fabrication. The goals and merits of suitable numerical algorithms for these applications are different from those of typical numerical analysis research in dynamical systems. Here the mathematical model is not fixed a priori but must be adjusted as necessary to capture the desired behaviour, with an emphasis on effectively producing lively animations of objects with complex geometries. Results are often judged by how realistic they appear to observers (by the "eye-norm") as well as by the efficacy of the numerical procedures employed. And yet, we show that with an adjusted view numerical analysis and applied mathematics can contribute significantly to the development of appropriate methods and their analysis in a variety of areas including finite element methods, stiff and highly oscillatory ODEs, model reduction, and constrained optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.