: To study the cause of physiological disorder in leaf of ginseng cultivated at paddy soil, the degree of browncolored symptom (BCS) and the contents of inorganic matter in leaf were investigated by irrigating the solution of ferric and ferrous iron of 0.1~2.0%, and citric acid of 1.0~4.0% on bed soil, respectively. Ratio of BCS by variety was as high as 85.0% in Yoenpoong, while it was as low as 5.4%, 7.5% in Chunpoong and Hwangsook, respectively. The contents of inorganic matter of leaf in Yoenpoong were lower in P 2 O 5 , Ca, and Mg, while it were higher in K, Fe, and Mn than other variety. Iron solution caused BCS more distinctly when each ferric and ferrous iron were dissolved with 1.0% citric acid than when each iron was dissolved without citric acid. Ferric iron caused BCS more effectively than ferrous iron. BCS occurred in 4.0% citric acid was as same as 2.0% ferric iron mixed with 1.0% citric acid. Low P 2 O 5 and high Fe content in leaf appeared in both of artificial and natural symptoms. We concluded that excessive Fe uptake caused BCS to leaf because the solubility of iron was increased in condition of low soil pH.
− Characteristics of self-propagating reaction for the preparation of ZnO powder from precursors composed of nitrate and citrate compounds were examined. The ratio of C/N was maintained in range of 0.7~0.8 to initiate the selfpropagating reaction between the reducing citrate and oxidizing nitrate groups. The samples were decomposed thermally by using TGA. The sudden decomposition occurred in the range of X > 0.5 in a very short time with a very sharp decrease of mass, indicating that the self-propagating reaction would occur. Friedman, Ozawa-Flynn-Wall and Vyazovkin methods were employed to predict the activation energy, reaction order and frequency factor of the reaction rate in the rate determining step of X < 0.5 range. The activation energy increased with increasing fractional conversion in the range of 46~130 (kJ/min). The reaction order decreased in the range of 2.9~0.9, while the frequency factor increased in the range of 85~278 (min
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.