Coronavirus disease 2019 (COVID-19) is a newly emerging human infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously called 2019-nCoV). Based on the rapid increase in the rate of human infection, the World Health Organization (WHO) has classified the COVID-19 outbreak as a pandemic. Because no specific drugs or vaccines for COVID-19 are yet available, early diagnosis and management are crucial for containing the outbreak. Here, we report a field-effect transistor (FET)-based biosensing device for detecting SARS-CoV-2 in clinical samples. The sensor was produced by coating graphene sheets of the FET with a specific antibody against SARS-CoV-2 spike protein.The performance of the sensor was determined using antigen protein, cultured virus, and nasopharyngeal swab specimens from COVID-19 patients. Our FET device could detect the SARS-CoV-2 spike protein at concentrations of 1 fg/mL in phosphate-buffered saline and 100 fg/mL clinical transport medium. In addition, the FET sensor successfully detected SARS-CoV-2 in culture medium (limit of detection [LOD]: 1.6 × 10 1 pfu/mL) and clinical samples (LOD: 2.42 × 10 2 copies/mL). Thus, we have successfully fabricated a promising FET biosensor for SARS-CoV-2; our device is a highly sensitive immunological diagnostic method for COVID-19 that requires no sample pretreatment or labeling.
Haginin A, an isoflav-3-ens isolated from the branch of Lespedeza cyrtobotrya, is almost unknown. Here, we report that haginin A exhibits a strong hypopigmentary effect in Melan-a cells and significantly inhibits melanin synthesis. Haginin A shows potent inhibitory effects with an IC(50) (half-maximal inhibitory concentration) value of 5.0 microM on mushroom tyrosinase activity, and functioned as a noncompetitive inhibitor. Also, haginin A decreased microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein-1 (TRP-1) protein production. To identify the signaling pathway of haginin A, the ability of haginin A to influence extracellular signal-regulated protein kinase (ERK) and Akt/protein kinase B (PKB) activation was investigated. Apparently, haginin A induced ERK and Akt/PKB in a dose-dependent manner. In addition, the specific inhibition of the ERK and the Akt/PKB signaling pathways by PD98059 and LY294002, respectively, increased melanin synthesis. Furthermore, haginin A decreased UV-induced skin pigmentation in brown guinea-pigs. Also, haginin A presented remarkable inhibition on the body pigmentation in the zebrafish model system and decreased tyrosinase activity. Together, haginin A is an effective inhibitor of hyperpigmentation caused by UV irradiation or by pigmented skin disorders through downregulation via ERK and Akt/PKB activation, MITF, and also by the subsequent downregulation of tyrosinase and TRP-1 production.
D-psicose has been implicated in glycemic control in recent animal and human studies. In this study, the effects of D-psicose on glycemic responses, insulin release, and lipid profiles were compared with those of D-glucose and D-fructose in a genetic diabetes model. C57BL/6J db/db mice were orally supplemented with 200 mg/kg BW of D-psicose, D-glucose, or D-fructose, respectively, while diabetes control or wild type mice were supplemented with water instead. D-psicose sustained weight gain by about 10% compared to other groups. The initial blood glucose level maintained from 276 to 305 mg/dL during 28 d in the D-psicose group, whereas a 2-fold increase was found in other groups (P < 0.05) among diabetic mice. D-psicose significantly improved glucose tolerance and the areas under the curve (AUC) for glucose among diabetes (P < 0.05), but had no effect on serum insulin concentration. The plasma lipid profile was not changed by supplemental monosacchrides, although the ratio of LDL-cholesterol/HDL-cholesterol was ameliorated by D-psicose. The administration of D-psicose reversed hepatic concentrations of triglyceride (TG) and total cholesterol (TC) by 37.88% and 62.89%, respectively, compared to the diabetes control (P < 0.05). The current findings suggest that D-psicose shows promise as an antidiabetic and may have antidyslipidemic effects in type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.