Background Mesenchymal stem cell therapy (MSCT) and defocused low-energy shock wave therapy (ESWT) has been shown to ameliorate erectile dysfunction (ED). However, the interactions and effects of action between MSCT and ESWT remain poorly understood. In this study, we investigated the mechanisms of combination therapy with MSCT and ESWT in a rat model of diabetic ED. Materials and Methods Eight-week-old male Sprague-Dawley rats were randomly divided into 2 parts. Diabetic rats induced by streptozotocin (65 mg/kg) were randomly divided into 4 groups: (1) DM control group, (2) DM + ESWT group, (3) DM + MSCT group, and (4) DM + ESWT + MSCT group. The sham group was a normal control group (without streptozotocin). MSCT and (or) ESWT were, respectively, administered to each group according to the proposal for 8 weeks. Immediately after recording of intracavernous pressure (ICP), the penis was then harvested for histologic analysis, ELISA, and Western blotting. Results The ratio of ICP/MAP was significantly higher in the DM + ESWT + MSCT group than in ESWT or MSCT treated group (P < 0.05). Also, the treatment stimulated angiogenesis and vasodilatation in the corpus cavernosum (P < 0.05). ESWT increased the quantity of MSCs in the corpus cavernosum and also induced MSCs to express more VEGF in vitro and vivo (P < 0.05) which activated the PI3K/AKT/mTOR and NO/cGMP signaling pathways in the corpus cavernosum. The combination approach stimulated autophagy and decreased apoptosis in the corpus cavernosum. NGF and BDNF expressions were higher in the DM + ESWT + MSCT group than in the DM control group (P < 0.01). Furthermore, the treatment promoted the MSC recruitment by inducing penile tissues to express more PECAM and SDF-1. Conclusions Combination of LI-ESWT and MSCT can get a better result than a single treatment by expressing more VEGF which can take part in autophagy by triggering the PI3K/AKT/mTOR signaling pathway. This cooperative therapy would provide a new research direction in ED treatment for the future.
Effective therapies for erectile dysfunction (ED) associated with diabetes mellitus (DM) are needed. In this study, the effects of stromal cell-derived factor-1 (SDF-1)-expressing engineered mesenchymal stem cells (SDF-1 eMSCs) and the relevant mechanisms in the corpus cavernosum of a streptozotocin (STZ)-induced DM ED rat model were evaluated. In a randomized controlled trial, Sprague–Dawley (SD) rats (n = 48) were divided into four groups (n = 12/group): Normal (control), DM ED (diabetes induced by STZ), DM ED + BM-MSC (treated with bone marrow [BM]-derived MSCs), and DM ED + SDF-1 eMSC (treated with SDF-1-expressing BM-MSCs). After four weeks, intracavernosal pressure (ICP), an indicator of erectile function, was 0.75 ± 0.07 in the normal group, 0.27 ± 0.08 in the DM ED group, 0.42 ± 0.11 in the DM ED + BM-MSC group, and 0.58 ± 0.11 in the DM ED + SDF-1 eMSC group. BM-MSCs, especially SDF-1 eMSCs, improved ED (p < 0.05). SDF-1 eMSC treatment improved the smooth muscle content in the corpus cavernosum (p < 0.05). As SDF-1 expression increased, ED recovery improved. In the SDF-1 eMSC group, levels of neuronal nitric oxide synthase (nNOS) and phosphorylated endothelial NOS (p-eNOS) were higher than those in other groups (p < 0.05). In addition, high stromal cell-derived factor-1 (SDF-1) expression was associated with increased vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in DM ED rats (p < 0.05). Higher levels of phosphorylated protein kinase B (p-AKT)/protein kinase B (AKT) (p < 0.05) and B-cell lymphoma-2 (Bcl-2) and lower levels of the apoptosis factors Bcl2-associated x (Bax) and caspase-3 were observed in the MSC-treated group than in the DM ED group (p < 0.05). SDF-1 eMSCs showed beneficial effects on recovery from erectile function.
Background This study aims to evaluate the effect of extracorporeal shock wave therapy (ESWT) on chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and to explore the mechanism. Methods RWPE‐2 cells were randomly divided into three groups: (a) RWPE‐2 group (normal control), (b) LPS groups (lipopolysaccharide inducing inflammation) and (c) ESWT groups (LPS induced RWPE‐2 treated by ESWT). After ESWT was administered, cells and supernatant were collected for enzyme‐linked immunosorbent assay (ELISA) and Western blot analysis. In vivo, Sprague‐Dawley rats (n = 30) were randomly divided into three groups: (a) normal control group, (b) prostatitis groups, and (c) ESWT groups. Prostatitis rats were induced by 17 β‐estradiol and dihydrotestosterone for 4 weeks. After ESWT, prostates of each group were collected for immunohistochemistry, Western blot analysis, and ELISA. Results ESWT improved prostatitis by attenuating inflammation (P < .01). ESWT downregulated the expression of cyclooxygenase 2 (COX‐2) through inhibiting TLR4‐NFκB pathway compared with the LPS group in vitro or prostatitis group in vivo (P < .05). TRAF2 mediates ERK1/2‐COX2 pathway. ESWT promotes prostate tissue recovery by stimulating vascular endothelial growth factor expression (P < .01). ESWT could suppress apoptosis in the prostate. Conclusions ESWT improved CP/CPPS and reduced inflammation by degrading COX‐2 in microenvironment through TLR4‐NFκB‐inhibiting pathway. TRAF2 regulator in ERK1/2‐COX‐2 inhibition significantly reduced inflammation, thus suggesting ESWT may be a potential and promising treatment for CP/CPPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.