Medical knowledge extraction has great potential to improve the treatment quality of hospitals. In this paper, we propose a clinical problem-action relation extraction method. It is based on clinical semantic units and event causality patterns in order to present a chronological view of a patient's problem and a physician's action. Based on our observation, a clinical semantic unit is defined as a conceptual medical knowledge for a problem and/or action. Since a clinical event is a basic concept of the problemaction relation, events are detected from clinical texts based on conditional random fields. A clinical semantic unit is segmented from a sentence based on time expressions and inherent structure of events. Then, a clinical semantic unit is classified into a problem and/or action relation based on event causality features in support vector machines. The experimental result on Korean medical collection shows 78.8% in F-measure when given the answer of clinical events. This result shows that the proposed method is effective for extracting clinical problem-action relations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.