Double layers composed of Sn and Mg, each 0.8 μm thick, were fabricated on a hot-dip galvanized steel (8.4 μm) sheet using DC magnetron sputtering and post-annealing processes. With an increase in temperature, the surface morphologies were agglomerated with each other. Additionally, Sn/Mg mixture sites, including an intermetallic compound of Mg2Sn, were formed at 190 °C and locally clustered at 220 °C. In the salt-spray test, the corrosion resistance of the Sn/Mg film prepared at 190 °C was 960 h, which is longer than that at non-heat for 528 h or 220 °C for 480 h. In the polarization test, the Sn/Mg film formed at 190 °C displayed a lower corrosion current density of 1.07 μA/cm2 and potential of 1.62 V/SSCE than those at non-heat or 220 °C.
This study aims to clarify how filler-typed metals which were ERNiCrMo-3 and ERNiCrMo-4 affect corrosion resistance characteristics in the weldment of super austenitic stainless steel joints under the simulated desulfurization environment for ships. The desulfurization environment includes high temperature, chlorides, and acidic conditions, which, inevitably, can cause severe corrosion to great extent. For exact clarification, the variations of microstructure and the composition distribution in the weldment before and after welding was examined by using scanning electron microscope and energy dispersive X-ray spectroscopy. Then, the corrosion resistance characteristics were comparatively evaluated through the cyclic potentiodynamic polarization test together with potential measurement under the desulfurization simulated environments. In addition, the correlation between passive film and corrosion resistance characteristics was investigated after identifying the formed features of the passive film through the X-ray photoelectron spectroscopy analysis. Through these studies, it made certain, ERNiCrMo-4 filler metal with high Mo content is advantageous for the formation of MoO3 oxide on the surface, which belongs to form a stable passive film and maintains the corrosion resistance characteristics under the simulated desulfurization environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.