Poly(lactic acid) (PLA) nanocomposites were synthesized by a solution blending and coagulation method using alkylated graphene oxide (AGO) as a reinforcing agent. Turbiscan confirmed that the alkylation of GO led to enhanced compatibility between the matrix and the filler. The improved dispersity of the filler resulted in superior interfacial adhesion between the PLA chains and AGO basal plane, leading to enhanced mechanical and rheological properties compared to neat PLA. The tensile strength and elongation at break, i.e., ductility, increased by 38% and 42%, respectively, at the same filler content nanocomposite (PLA/AGO 1 wt %) compared to nonfiller PLA. Rheological analysis of the nanocomposites in the molten state of the samples was performed to understand the filler network formed inside the matrix. The storage modulus increased significantly from PLA/AGO 0.5 wt % (9.6 Pa) to PLA/AGO 1.0 wt % (908 Pa). This indicates a percolation threshold between the two filler contents. A steady shear test was performed to examine the melt flow characteristics of PLA/AGO nanocomposites at 170 °C, and the viscosity was predicted using the Carreau−Yasuda model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.