In most species, the meiotic cell cycle is arrested at the transition between prophase and metaphase through unclear somatic signals. Activation of the Cdc2-kinase component of maturation promoting factor (MPF) triggers germinal vesicle breakdown after the luteinizing hormone (LH) surge and reentry into the meiotic cell cycle. Although high levels of cAMP and activation of protein kinase A (PKA) play a critical role in maintaining an inactive Cdc2, the steps downstream of PKA in the oocyte remain unknown. Using a small-pool expression-screening strategy, we have isolated several putative PKA substrates from a mouse oocyte cDNA library. One of these clones encodes a Wee1-like kinase that prevents progesterone-induced oocyte maturation when expressed in Xenopus oocytes. Unlike the widely expressed Wee1 and Myt1, mWee1B mRNA and its protein are expressed only in oocytes, and mRNA downregulation by RNAi injection in vitro or transgenic overexpression of RNAi in vivo causes a leaky meiotic arrest. Ser15 residue of mWee1B is the major PKA phosphorylation site in vitro, and the inhibitory effects of the kinase are enhanced when this residue is phosphorylated. Thus, mWee1B is a key MPF inhibitory kinase in mouse oocytes, functions downstream of PKA, and is required for maintaining meiotic arrest.
Background This study aimed to investigate the recent prevalence, management, and comorbidities of diabetes among Korean adults aged ≥30 years by analyzing nationally representative data. Methods This study used data from the Korea National Health and Nutrition Examination Survey from 2016 to 2018, and the percentage and total number of people ≥30 years of age with diabetes and impaired fasting glucose (IFG) were estimated. Results In 2018, 13.8% of Korean adults aged ≥30 years had diabetes, and adults aged ≥65 years showed a prevalence rate of 28%. The prevalence of IFG was 26.9% in adults aged ≥30 years. From 2016 to 2018, 35% of the subjects with diabetes were not aware of their condition. Regarding comorbidities, 53.2% and 61.3% were obese and hypertensive, respectively, and 72% had hypercholesterolemia as defined by low-density lipoprotein cholesterol (LDL-C) ≥100 mg/dL in people with diabetes. Of the subjects with diabetes, 43.7% had both hypertension and hypercholesterolemia. With regard to glycemic control, only 28.3% reached the target level of <6.5%. Moreover, only 11.5% of subjects with diabetes met all three targets of glycosylated hemoglobin, blood pressure, and LDL-C. The percentage of energy intake from carbohydrates was higher in diabetes patients than in those without diabetes, while that from protein and fat was lower in subjects with diabetes. Conclusion The high prevalence and low control rate of diabetes and its comorbidities in Korean adults were confirmed. More stringent efforts are needed to improve the comprehensive management of diabetes to reduce diabetes-related morbidity and mortality.
Keeping Wee1B in the nucleus is important to maintain meiotic arrest, but its timely export is also required for meiosis to resume.
During the growth of the ovarian follicle, mammalian oocytes are arrested in the late G 2 phase of meiosis through ill-defined mechanisms until shortly before ovulation. The molecular machinery controlling the meiotic, as well as mitotic, cell cycle is centered around the regulation of the activity of MPF, a complex composed of a catalytic Cdc2 and the cyclin B regulatory subunit. Cdc2 kinase is inactive as long as oocytes remain in a germinal vesicle state. Its activation is the molecular event that triggers germinal vesicle breakdown and oocyte reentry into the cell cycle. Countless studies have indicated that levels of the second messenger cAMP in the oocyte play a critical role in maintaining meiotic arrest. High cyclic AMP levels in the oocyte maintain protein kinase A (PKA) in an active/dissociated state, which in turn leads to the phosphorylation of unknown protein substrates. The biochemical steps linking a decrease in cAMP levels and MPF activation have been explored only recently. Here we will review the data supporting a simple scenario whereby Cdc25 and Wee1 kinase are substrates of the PKA in oocytes. As a result of these regulatory loops, the Cdc2/cyclin B complex is maintained in an inactive state by the two-way PKA-dependent activation of Wee1 and inactivation of Cdc25.
Although overweight/obesity is a major risk factor for the development of type 2 diabetes mellitus, there is increasing evidence that overweight or obese patients with type 2 diabetes mellitus experience lower mortality compared with patients of normal weight. This paradoxical finding, known as the “obesity paradox,” occurs in other chronic diseases, and in type 2 diabetes mellitus is particularly perplexing given that lifestyle intervention with one goal being weight reduction is an important feature of the management of this condition. We summarize in this review the findings from clinical and epidemiologic studies that have investigated the association between overweight and obesity (usually assessed using body mass index [BMI]) and mortality in type 2 diabetes mellitus and discuss potential causes of the obesity paradox. We conclude that most studies show evidence of an obesity paradox, but important conflicting findings still exist. We also evaluate if potential bias might explain the obesity paradox in diabetes, including, for example, the presence of confounding factors, measurement error due to use of BMI as an index of obesity, and reverse causation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.