Chronic osteoarthritis (OA) pain of the knee is often not effectively managed with current non-pharmacological or pharmacological treatments. Radiofrequency (RF) neurotomy is a therapeutic alternative for chronic pain. We investigated whether RF neurotomy applied to articular nerve branches (genicular nerves) was effective in relieving chronic OA knee joint pain. The study involved 38 elderly patients with (a) severe knee OA pain lasting more than 3 months, (b) positive response to a diagnostic genicular nerve block and (c) no response to conservative treatments. Patients were randomly assigned to receive percutaneous RF genicular neurotomy under fluoroscopic guidance (RF group; n=19) or the same procedure without effective neurotomy (control group; n=19). Visual analogue scale (VAS), Oxford knee scores, and global perceived effect on a 7-point scale were measured at baseline and at 1, 4, and 12weeks post-procedure. VAS scores showed that the RF group had less knee joint pain at 4 (p<0.001) and 12 (p<0.001) weeks compared with the control group. Oxford knee scores showed similar findings (p<0.001). In the RF group, 10/17 (59%), 11/17 (65%) and 10/17 (59%) achieved at least 50% knee pain relief at 1, 4, and 12 weeks, respectively. No patient reported a post-procedure adverse event during the follow-up period. RF neurotomy of genicular nerves leads to significant pain reduction and functional improvement in a subset of elderly chronic knee OA pain, and thus may be an effective treatment in such cases. Further trials with larger sample size and longer follow-up are warranted.
IntroductionInterleukin-34 (IL-34) is a recently defined cytokine, showing a functional overlap with macrophage colony stimulating factor (M-CSF). This study was undertaken to address the expression of IL-34 in rheumatoid arthritis (RA) patients and to investigate its regulation and pathogenic role in RA.MethodsIL-34 levels were determined in the RA synovium, synovial fluid (SF) and fibroblast-like synovial cells (FLS) by immunohistochemistry, real-time PCR, enzyme-linked immunosorbent assay and immunoblotting. RA activity was assessed using Disease Activity Score 28 (DAS28) activity in the plasma collected at baseline and one year after treatment. Conditioned media (CM) were prepared from RA FLS culture with tumor necrosis factor alpha (TNFα) for 24 hours and used for functional assay.ResultsIL-34 was expressed in the synovium, SF, and FLS from RA patients. The production of IL-34 in FLS was up-regulated by TNFα in RA samples compared with osteoarthritis (OA) patients. Importantly, the preferential induction of IL-34 rather than M-CSF by TNFα in RAFLS was mediated by the transcription factor nuclear factor kappa B (NF-κB) and activation of c-Jun N-terminal kinase (JNK). IL-34 elevation in plasma from RA patients was decreased after the administration of disease-modifying anti-rheumatic drugs (DMARDs) in accordance with a decrease in DAS28. CM from RAFLS cultured with TNFα promoted chemotactic migration of human peripheral blood mononuclear cells (PBMCs) and subsequent osteoclast (OC) formation, effects that were attenuated by an anti-IL-34 antibody.ConclusionsThese data provide novel information about the production of IL-34 in RA FLS and indicate that IL-34 is an additional osteoclastogenic factor regulated by TNFα in RA, suggesting a discrete role of IL-34 in inflammatory RA diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.