The Escherichia coli OxyR transcription factor senses H2O2 and is activated through the formation of an intramolecular disulfide bond. Here we present the crystal structures of the regulatory domain of OxyR in its reduced and oxidized forms, determined at 2.7 A and 2.3 A resolutions, respectively. In the reduced form, the two redox-active cysteines are separated by approximately 17 A. Disulfide bond formation in the oxidized form results in a significant structural change in the regulatory domain. The structural remodeling, which leads to different oligomeric associations, accounts for the redox-dependent switch in OxyR and provides a novel example of protein regulation by "fold editing" through a reversible disulfide bond formation within a folded domain.
Because signal transducer and activator of transcription 3 (STAT3) is constitutively activated in most human solid tumors and is involved in the proliferation, angiogenesis, immune evasion, and antiapoptosis of cancer cells, researchers have focused on STAT3 as a target for cancer therapy. We screened for natural compounds that inhibit the activity of STAT3 using a dual-luciferase assay. Cryptotanshinone was identified as a potent STAT3 inhibitor. Cryptotanshinone rapidly inhibited STAT3 Tyr705 phosphorylation in DU145 prostate cancer cells and the growth of the cells through 96 hours of the treatment. Inhibition of STAT3 Tyr705 phosphorylation in DU145 cells decreased the expression of STAT3 downstream target proteins such as cyclin D1, survivin, and Bcl-xL. To investigate the cryptotanshinone inhibitory mechanism in DU145 cells, we analyzed proteins upstream of STAT3. Although phosphorylation of Janus-activated kinase (JAK) 2 was inhibited by 7 Mmol/L cryptotanshinone at 24 hours, inhibition of STAT3 Tyr705 phosphorylation occurred within 30 minutes and the activity of the other proteins was not affected. These results suggest that inhibition of STAT3 phosphorylation is caused by a JAK2-independent mechanism, with suppression of JAK2 phosphorylation as a secondary effect of cryptotanshinone treatment. Continuing experiments revealed the possibility that cryptotanshinone might directly bind to STAT3 molecules. Cryptotanshinone was colocalized with STAT3 molecules in the cytoplasm and inhibited the formation of STAT3 dimers. Computational modeling showed that cryptotanshinone could bind to the SH2 domain of STAT3. These results suggest that cryptotanshinone is a potent anticancer agent targeting the activation STAT3 protein. It is the first report that cryptotanshinone has antitumor activity through the inhibition of STAT3.
Abstract-Maximization of the weighted sum-rate of secondary users (SUs) possibly equipped with multiantenna transmitters and receivers is considered in the context of cognitive radio (CR) networks with coexisting primary users (PUs). The total interference power received at the primary receiver is constrained to maintain reliable communication for the PU. An interference channel configuration is considered for ad hoc networking, where the receivers treat the interference from undesired transmitters as noise. Without the CR constraint, a convergent distributed algorithm is developed to obtain (at least) a locally optimal solution. With the CR constraint, a semidistributed algorithm is introduced. An alternative centralized algorithm based on geometric programming and network duality is also developed. Numerical results show the efficacy of the proposed algorithms. The novel approach is flexible to accommodate modifications aiming at interference alignment. However, the stand-alone weighted sum-rate optimal schemes proposed here have merits over interference-alignment alternatives especially for practical SNR values.Index Terms-Ad hoc network, cognitive radio, interference network, MIMO, optimization.
Purpose: MicroRNAs (miRNA) are small noncoding RNAs that are 18 to 25 nucleotides in length; they regulate the stability or translational efficiency of target mRNAs. Emerging evidence suggests that miRNAs might be involved in the pathogenesis of a variety of human cancers. Experimental Design: In this study, we profiled miRNA expression in 10 early stage invasive squamous cell carcinomas (ISCC) and 10 normal cervical squamous epithelial specimens using TaqMan real-time quantitative PCR array methods. In order to evaluate the role of miR-199a, one of the most significantly overexpressed in ISCCs, we transfected cervical cancer cells (SiHa and ME-180) with anti^miR-199a oligonucleotides and assessed the cell viability. Results: We found 70 genes (68 up-regulated, 2 down-regulated) with significantly different expression in the ISCCs compared with normal samples (P < 0.05). When we analyzed the expression of the 10 most significant miRNAs in 31 ISCCs, increased miR-127 expression was significantly associated with lymph node metastasis (P = 0.006). Transfection of antim iR-199a oligonucleotides to cervical cancer cells suppressed cell growth in vitro, which was potentiated with the anticancer agent cisplatin. Conclusions: Our results show that miRNA deregulation may play an important role in the malignant transformation of cervical squamous cells. In addition, they may offer new candidate targets to be exploited for both prognostic and therapeutic strategies in patients with cervical cancer.
The Escherichia coli OxyR transcription factor is activated by cellular hydrogen peroxide through the oxidation of reactive cysteines. Although there is substantial evidence for specific disulfide bond formation in the oxidative activation of OxyR, the presence of the disulfide bond has remained controversial. By mass spectrometry analyses and in vivo labeling assays we found that oxidation of OxyR in the formation of a specific disulfide bond between Cys199 and Cys208 in the wild-type protein. In addition, using time-resolved kinetic analyses, we determined that OxyR activation occurs at a rate of 9.7 s(-1). The disulfide bond-mediated conformation switch results in a metastable form that is locally strained by approximately 3 kcal mol(-1). On the basis of these observations we conclude that OxyR activation requires specific disulfide bond formation and that the rapid kinetic reaction path and conformation strain, respectively, drive the oxidation and reduction of OxyR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.