A slurry pump is a device used to transport slurry, which is a mixture of solids and liquids. The slurry pump is subjected to physical erosion, generally resulting from erosion by friction between the solid and liquid particles. This study aimed to analyze the effects of process parameters on the erosion wear of a throat bush, which is the main component of a slurry pump. The erosion rate density (E) was analyzed based on the process parameters, that is, the slurry particle diameter, rotation speed of the impeller, and gap between the impeller and the throat bush. The discrete phase model (DPM) of the slurry pump was simulated using the process parameters. These parameters were optimized to minimize the erosion rate density. The optimization method using design of experiments (DOE) to derive a specific location with the greatest influence of the design variables through the one-way layout method and optimize the response value at that location is a method that efficiently analyzes a large number of cases. The optimization results confirmed that the erosion rate density was reduced in the optimization model compared with the earlier model.
As automotive lamps are highly integrated, the heat generated from bulbs reduces the light quantity and lifespan of the bulbs. Numerous studies have been actively conducted worldwide on heat dissipation designs and material modifications for heat release. In this study, an analysis was carried out of the mechanical, thermal, and morphological characteristics of Polybutylene Terephthalate (PBT) and Polyamide (PA6) matrix composites containing alumina filler; further, their flowability and injection moldability were also studied. The PA6 matrix that was subjected to an addition of 60% alumina was selected as the sample. To compare the performances of the selected composites with that of the fog lamp reflector manufactured with conventional PBT, fog lamp reflectors were fabricated. When 60% alumina was added, the thermal conductivity was improved. Thus, the maximum temperature of the lamp reflector was reduced, and the heat was transferred to the surroundings; this was in contrast to the fog lamp reflector fabricated with conventional PBT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.