NFκB is a central mediator of inflammation. Present inhibitors of NFκB are mostly based on inhibition of essential machinery such as proteasome and protein kinases, or activation of nuclear receptors; as such, they are of limited therapeutic use due to severe toxicity. Here we report an LPS-induced NFκB enhanceosome in which TonEBP is required for the recruitment of p300. Increased expression of TonEBP enhances the NFκB activity and reduced TonEBP expression lowers it. Recombinant TonEBP molecules incapable of recruiting p300 do not stimulate NFκB. Myeloid-specific deletion of TonEBP results in milder inflammation and sepsis. We discover that a natural small molecule cerulenin specifically disrupts the enhanceosome without affecting the activation of NFκB itself. Cerulenin suppresses the pro-inflammatory activation of macrophages and sepsis without detectable toxicity. Thus, the NFκB enhanceosome offers a promising target for useful anti-inflammatory agents.
TonEBP is a key transcriptional activator of M1 phenotype in macrophage, and its high expression is associated with many inflammatory diseases. During the progression of the inflammatory responses, the M1 to M2 phenotypic switch enables the dual role of macrophages in controlling the initiation and resolution of inflammation. Here we report that in human and mouse M1 macrophages TonEBP suppresses IL-10 expression and M2 phenotype. TonEBP knockdown promoted the transcription of the IL-10 gene by enhancing chromatin accessibility and Sp1 recruitment to its promoter. The enhanced expression of M2 genes by TonEBP knockdown was abrogated by antagonism of IL-10 by either neutralizing antibodies or siRNA-mediated silencing. In addition, pharmacological suppression of TonEBP leads to similar upregulation of IL-10 and M2 genes. Thus, TonEBP suppresses M2 phenotype via downregulation of the IL-10 in M1 macrophages.
Tonicity-responsive enhancer binding protein (TonEBP or NFAT5) is a regulator of cellular adaptation to hypertonicity, macrophage activation and T-cell development. Here we report that TonEBP is an epigenetic regulator of thermogenesis and obesity. In mouse subcutaneous adipocytes, TonEBP expression increases > 50-fold in response to high-fat diet (HFD) feeding. Mice with TonEBP haplo-deficiency or adipocyte-specific TonEBP deficiency are resistant to HFD-induced obesity and metabolic defects (hyperglycemia, hyperlipidemia, and hyperinsulinemia). They also display increased oxygen consumption, resistance to hypothermia, and beiging of subcutaneous fat tissues. TonEBP suppresses the promoter of β3-adrenoreceptor gene, a critical regulator of lipolysis and thermogenesis, in ex vivo and cultured adipocytes. This involves recruitment of DNMT1 DNA methylase and methylation of the promoter. In human subcutaneous adipocytes TonEBP expression displays a correlation with body mass index but an inverse correlation with β3-adrenoreceptor expression. Thus, TonEBP is an attractive therapeutic target for obesity, insulin resistance, and hyperlipidemia.
The endoplasmic reticulum (ER) stress response and autophagy are important cellular responses that determine cell fate and whose dysregulation is implicated in the perturbation of homeostasis and diseases. Tonicity-responsive enhancer-binding protein (TonEBP, also called NFAT5) is a pleiotropic stress protein that mediates both protective and pathological cellular responses. Here, we examined the role of TonEBP in β-cell survival under ER stress. We found that TonEBP increases β-cell survival under ER stress by enhancing autophagy. The level of TonEBP protein increased under ER stress due to a reduction in its degradation via the ubiquitin–proteasome pathway. In response to ER stress, TonEBP increased autophagosome formations and suppressed the accumulation of protein aggregates and β-cell death. The Rel-homology domain of TonEBP interacted with FIP200, which is essential for the initiation of autophagy, and was required for autophagy and cell survival upon exposure to ER stress. Mice in which TonEBP was specifically deleted in pancreatic endocrine progenitor cells exhibited defective glucose homeostasis and a loss of islet mass. Taken together, these findings demonstrate that TonEBP protects against ER stress-induced β-cell death by enhancing autophagy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.