The cutoff value for reflux in the superficial and deep calf veins is greater than 500 ms. However, the reflux cutoff value for the femoropopliteal veins should be greater than 1000 ms. Outward flow in the perforating veins should be considered abnormal at greater than 350 ms. Reflux testing should be performed with the patient standing.
Primary venous reflux can occur in any superficial or deep vein of the lower limbs. The below-knee veins are often involved in asymptomatic individuals and in those who have prominent or varicose veins. These data suggest that reflux appears to be a local or multifocal process in addition to or separate from a retrograde process.
Ultrasound-guided thrombin injection of pseudoaneurysms has excellent results, which support its widespread use as the primary treatment for this common problem.
Percutaneous ultrasound guided thrombin injection appears to be a safe and expeditious method for treating postcatheterization femoral pseudoaneurysms. It has significant advantages with respect to ultrasound guided compression repair or surgical repair.
Past research aimed at increasing the sensitivity of capacitive pressure sensors has mostly focused on developing dielectric layers with surface/porous structures or higher dielectric constants. However, such strategies have only been effective in improving sensitivities at low pressure ranges (e.g., up to 3 kPa). To overcome this well‐known obstacle, herein, a flexible hybrid‐response pressure sensor (HRPS) composed of an electrically conductive porous nanocomposite (PNC) laminated with an ultrathin dielectric layer is devised. Using a nickel foam template, the PNC is fabricated with carbon nanotubes (CNTs)‐doped Ecoflex to be 86% porous and electrically conductive. The PNC exhibits hybrid piezoresistive and piezocapacitive responses, resulting in significantly enhanced sensitivities (i.e., more than 400%) over wide pressure ranges, from 3.13 kPa−1 within 0–1 kPa to 0.43 kPa−1 within 30–50 kPa. The effect of the hybrid responses is differentiated from the effect of porosity or high dielectric constants by comparing the HRPS with its purely piezocapacitive counterparts. Fundamental understanding of the HRPS and the prediction of optimal CNT doping are achieved through simplified analytical models. The HRPS is able to measure pressures from as subtle as the temporal arterial pulse to as large as footsteps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.