Antisense oligonucleotide loaded chitosan nanoparticles were prepared and the release of oligonucleotide from chitosan-TPP/oligonucleotide nanoparticles was investigated. Morphological property, zeta potential and particle size of the prepared chitosan/oligonucleotide nanoparticles were investigated using Field Emission-Scanning Electron Microscope (FE-SEM) and particle size analyzer. The interaction between chitosan and oligonucleotide was confirmed by using capillary zone electrophoresis (CZE), and the released oligonucleotides were determined by spectrophotometric method. Oligonucleotides formed the complexes with chitosan with a unique morphological property. The release of oligonucleotides from nanoparticles was dependent on loading methods and pH conditions. Chitosan/oligomer-TPP nanoparticles, which was prepared by adding TPP after the formation of chitosan/oligonucleotide complex, showed the lowest release percent of oligonucleotides with 41.3% at pH 7.0 among the loading methods. The percent release of oligonucleotide from oligonucleotide loaded chitosan nanoparticle at pH 10 was higher than the one in acidic condition (pH 5.0). The released oligonucleotides from chitosan/oligonucleotide nanoparticles were stable enough for 12 h under the 20% saliva solution. Our results suggest that the sustained release of oligonucleotide from chitosan nanoparticles may be suitable for the local therapeutic application in periodontal diseases.
Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given of the author(s) as the source and IRENA as the copyright holder. Material in this publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate permissions from these third parties may need to be secured before any use of such material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.