A novel three dimensional blood brain barrier (BBB) platform was developed by independently supplying different types of media to separate cell types within a single device. One channel (vascular channel, VC) is connected to the inner lumen of the vascular network while the other supplies media to the neural cells (neural channel, NC). Compared to co-cultures supplied with only one type of medium (or 1:1 mixture), best barrier properties and viability were obtained with culturing HUVECs with endothelial growth medium (EGM) and neural cells with neurobasal medium supplemented with fetal bovine serum (NBMFBS) independently. The measured vascular network permeability were comparable to reported in vivo values (20 kDa FITC-dextran, 0.45 ± 0.11 × 10−6 cm/s; 70 kDa FITC-dextran, 0.36 ± 0.05 × 10−6 cm/s) and a higher degree of neurovascular interfacing (astrocytic contact with the vascular network, GFAP-CD31 stain overlap) and presence of synapses (stained with synaptophysin). The BBB platform can dependably imitate the perivascular network morphology and synaptic structures characteristic of the NVU. This microfluidic BBB model can find applications in screening pharmaceuticals that target the brain for in neurodegenerative diseases.
The human central nervous system (CNS) vasculature expresses a distinctive barrier phenotype, the blood-brain barrier (BBB). As the BBB contributes to low efficiency in CNS pharmacotherapy by restricting drug transport, the development of an in vitro human BBB model has been in demand. Here, we present a microfluidic model of CNS angiogenesis having three-dimensional (3D) lumenized vasculature in concert with perivascular cells. We confirmed the necessity of the angiogenic tri-culture system (brain endothelium in direct interaction with pericytes and astrocytes) to attain essential phenotypes of BBB vasculature, such as minimized vessel diameter and maximized junction expression. In addition, lower vascular permeability is achieved in the tri-culture condition compared to the monoculture condition.Notably, we focussed on reconstituting the functional efflux transporter system, including p-glycoprotein (p-gp), which is highly responsible for restrictive drug transport. By conducting the calcein-AM efflux assay on our 3D perfusable vasculature after treatment of efflux transporter inhibitors, we confirmed the higher efflux property and prominent effect of inhibitors in the tri-culture model. Taken together, we designed a 3D human BBB model with functional barrier properties based on a developmentally inspired CNS angiogenesis protocol. We expect the model to contribute to a deeper understanding of pathological CNS angiogenesis and the development of effective CNS medications.
K E Y W O R D S3D vascular model, blood-brain barrier, CNS angiogenesis, efflux transporter, organ-on-chip
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.