In the information retrieval systems like vector model implementation and document clustering, document similarity calculation takes a great part on the overall performance of the system. In this paper, GPU parallelism has been explored to enhance the processing speed of document similarity calculation in a CUDA framework. The proposed method increased the similarity calculation speed almost 15 times better compared to the typical CPU-based framework. It is 5.2 and 3.4 times better than the methods by using CUBLAS and Thrust, respectively.
Named entity recognition is required to improve the retrieval accuracy of patent documents or similar patents in the claims and patent descriptions. In this paper, we proposed an automatic named entity recognition for patents by using a conditional random field that is one of the best methods in machine learning research. Named entity recognition system has been constructed from the training set of tagged corpus with 660,000 words and 70,000 words are used as a test set for evaluation. The experiment shows that the accuracy is 93.6% and the Kappa coefficient is 0.67 between manual tagging and automatic tagging system. This figure is better than the Kappa coefficient 0.6 for manually tagged results and it shows that automatic named entity tagging system can be used as a practical tagging for patent documents in replacement of a manual tagging.
Short message service(SMS) in a mobile communication environment is a very convenient method. However, it caused a serious side effect of generating spam messages for advertisement. Those who send spam messages distort or deform SMS sentences to avoid the messages being filtered by automatic filtering system. In order to increase the performance of spam filtering system, we need to recover the distorted sentences into normal sentences. This paper proposes a method of normalizing the various types of distorted sentence and extracting keywords through automatic word spacing and compound noun decomposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.