Photoacoustic signal generation by metal nanoparticles relies on the efficient conversion of light to heat, its transfer to the environment and the production of pressure transients. In this study we demonstrate that a dielectric shell has a strong influence on the amplitude of the generated photoacoustic signal, and that silica coated gold nanorods of the same optical density are capable of producing about 3-fold higher photoacoustic signals than nanorods without silica coating. Spectrophotometry measurements and finite difference time domain (FDTD) analysis of gold nanorods before and after silica coating showed only an insignificant change of the extinction and absorption cross-sections, hence indicating that the enhancement is not attributable to changes in absorption cross-section resulting from the silica coating. Several factors including the silica thickness, the gold/silica interface, and the surrounding solvent were varied to investigate their effect on the photoacoustic signal produced from silica-coated gold nanorods. The results suggest that the enhancement is caused by the reduction of the gold interfacial thermal resistance with the solvent due to the silica coating. The strong contrast enhancement in photoacoustic imaging, demonstrated using phantoms with silica-coated nanorods, shows that these hybrid particles acting as "photoacoustic nano-amplifiers" are high efficiency contrast agents for photoacoustic imaging or photoacoustic image-guided therapy. KeywordsPhotoacoustic imaging; silica coated-gold nanorods; photoacoustic nano-amplifiers; medical and biological imaging; contrast agents Photoacoustic imaging is a non-ionizing and noninvasive imaging modality that combines the advantages of both optical and acoustic imaging. [1][2][3][4] In photoacoustic imaging, the intensity modulated electromagnetic radiation, e.g. a beam of pulsed laser light, is directed at the imaging target. The light is absorbed and converted to an outgoing thermoacoustic wave that can be detected by an ultrasound transducer and used to reconstruct images.5 -8 Since light is only used for heating and not for imaging, and acoustic waves are less scattered in optically turbid materials such as tissue, photoacoustic imaging can reach far deeper into turbid materials than purely optical imaging techniques.8 -9 The contrast in photoacoustic * To whom correspondence should be addressed. Telephone: (512) 471-1733. Fax: (512) imaging depends on the optical-to-acoustic conversion (optoacoustic) efficiency, i.e., how many incident photons can be absorbed and converted to heat, and how fast the generated heat can diffuse out from the target during thermoelastic expansion and wave generation. When a uniformly absorbing target is irradiated by pulsed light, the amplitude of the generated photoacoustic signal is proportional to the optical absorption and the thermalacoustic properties of the absorbing medium. In contrast, in a heterogeneous medium such as a weakly absorbing solvent containing plasmonic nanoparticles, the amp...
Photothermal stability and, therefore, consistency of both optical absorption and photoacoustic response of the plasmonic nanoabsorbers is critical for successful photoacoustic image-guided photothermal therapy. In this study, silica-coated gold nanorods were developed as a multifunctional molecular imaging and therapeutic agent suitable for image-guided photothermal therapy. The optical properties and photothermal stability of silica-coated gold nanorods under intense irradiation with nanosecond laser pulses were investigated by UV-Vis spectroscopy and transmission electron microscopy. Silica-coated gold nanorods showed increased photothermal stability and retained their superior optical properties under much higher fluences. The changes in photoacoustic response of PEGylated and silica-coated nanorods under laser pulses of various fluences were compared. The silica-coated gold nanorods provide a stable photoacoustic signal, which implies better imaging capabilities and make silica-coated gold nanorods a promising imaging and therapeutic nano-agent for photoacoustic imaging and image-guided photothermal therapy.
BackgroundPulmonary actinomycosis is a chronic pulmonary infection caused by Actinomyces. Both improving oral hygiene and early application of antibiotics to the case of suspicious pulmonary infections result in changes in incidences and presentations of pulmonary actinomycosis. However, there are little reports dealt with the recent clinical characteristics of pulmonary actinomycosis. This study aimed to review the characteristics of pulmonary actinomycosis occurred during the first decade of 21st century.MethodsThis retrospective study was performed on 94 subjects with pulmonary actinomycosis diagnosed pathologically from January 2000 to December 2010 in 13 hospitals in Korea.ResultsThe data of the study showed that pulmonary actinomycosis occurs frequently in middle to old-aged males (mean age; 57.7 years old) and that the most common symptoms are cough, hemoptysis, and sputum production. Various radiologic features such as the consolidation with central low attenuation (74.5%) and no regional predominance were also observed. Most of patients recovered completely with medical and/or surgical treatment, reaching approximately 98% cure rate.ConclusionsThe results demonstrate that pulmonary actinomycosis is one of the cautious pulmonary diseases. More importantly, in cases of persistent hemoptysis or for differential diagnosis from lung malignancy, our data have revealed that surgical resection appears to be a useful intervention and that radiologic diagnosis may not provide decisive information. These findings indicate that it is important for the clinicians to include pulmonary actinomycosis as one of differential diagnoses for refractory pulmonary abnormal lesions to the current usual management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.