This paper proposes a dynamic verification scheme for finger-drawn signatures in smartphones. As a dynamic feature, the movement of a smartphone is recorded with accelerometer sensors in the smartphone, in addition to the moving coordinates of the signature. To extract high-level longitudinal and topological features, the proposed scheme uses a convolution neural network (CNN) for feature extraction, and not as a conventional classifier. We assume that a CNN trained with forged signatures can extract effective features (called S-vector), which are common in forging activities such as hesitation and delay before drawing the complicated part. The proposed scheme also exploits an autoencoder (AE) as a classifier, and the S-vector is used as the input vector to the AE. An AE has high accuracy for the one-class distinction problem such as signature verification, and is also greatly dependent on the accuracy of input data. S-vector is valuable as the input of AE, and, consequently, could lead to improved verification accuracy especially for distinguishing forged signatures. Compared to the previous work, i.e., the MLP-based finger-drawn signature verification scheme, the proposed scheme decreases the equal error rate by 13.7%, specifically, from 18.1% to 4.4%, for discriminating forged signatures.
Hidden Singer is a television program in Korea. In the show, the original singer and four imitating singers sing a song in hiding behind a screen. The audience and TV viewers attempt to guess who the original singer is by listening to the singing voices. Usually, there are few correct answers from the audience, because the imitators are well trained and highly skilled. We propose a computerized system for distinguishing the original singer from the imitating singers. During the training phase, the system learns only the original singer's song because it is the one the audience has heard before. During the testing phase, the songs of five candidates are provided to the system and the system then determines the original singer. The system uses a 1-class authentication method, in which only a subject model is made. The subject model is used for measuring similarities between the candidate songs. In this problem, unlike other existing studies that require artist identification, we cannot utilize multi-class classifiers and supervised learning because songs of the imitators and the labels are not provided during the training phase. Therefore, we evaluate the performances of several 1-class learning algorithms to choose which one is more efficient in distinguishing an original singer from among highly skilled imitators. The experiment results show that the proposed system using the autoencoder performs better (63.33%) than other 1-class learning algorithms: Gaussian mixture model (GMM) (50%) and one class support vector machines (OCSVM) (26.67%). We also conduct a human contest to compare the performance of the proposed system with human perception. The accuracy of the proposed system is found to be better (63.33%) than the average accuracy of human perception (33.48%).
This paper proposes an address authentication method based on a user’s location history. Address authentication refers to actual residence verification, which can be used in various fields such as personnel qualification, online identification, and public inquiry. In other words, accurate address authentication methods can reduce social cost for actual residence verification. For address authentication, existing studies discover the user’s regular locations, called location of interest (LOI), from the location history by using clustering algorithms. They authenticate an address if the address is contained in one of the LOIs. However, unnecessary LOIs, which are unrelated to the address may lead to false authentications of illegitimate addresses, that is, other users’ addresses or feigned addresses. The proposed method tries to reduce the authentication error rate by eliminating unnecessary LOIs with the distinguishing properties of the addresses. In other words, only few LOIs that satisfy the properties (long duration, high density, and consistency) are kept and utilized for address authentication. Experimental results show that the proposed method decreases the authentication error rate compared with previous approaches using time-based clustering and density-based clustering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.