First-principles calculations have been used to investigate the effects of Al and Mg doping on the prevention of degradation phenomena in Li(NiCoMn)O cathode materials. Specifically, we have examined the effects of dopants on the suppression of oxygen evolution and cation disordering, as well as their correlation. It is found that Al doping can suppress the formation of oxygen vacancies effectively, while Mg doping prevents the cation disordering behaviors, i.e., excess Ni and Li/Ni exchange, and Ni migration. This study also demonstrates that formation of oxygen vacancies can facilitate the construction of the cation disordering, and vice versa. Delithiation can increase the probabilities of formation of all defect types, especially oxygen vacancies. When oxygen vacancies are present, Ni can migrate to the Li site during delithiation. However, Al and Mg doping can inhibit Ni migration, even in structures with preformed oxygen defects. The analysis of atomic charge variations during delithiation demonstrates that the degree of oxidation behavior in oxygen atoms is alleviated in the case of Al doping, indicating the enhanced oxygen stability in this structure. In addition, changes in the lattice parameters during delithiation are suppressed in the Mg-doped structure, which suggests that Mg doping may improve the lattice stability.
The effect of bi-functional coatings consisting of Zr and phosphate (P) on the electrochemical performance of LiNiCoMnO (NCM) has been investigated. The presence of various types of Zr and P compounds such as oxides (ZrO and LiZrO) and phosphates (ZrPO, ZrPO and LiZr(PO)) in the coating was confirmed by experiments as well as density functional theory (DFT) calculations. When the NCM samples were coated with the Zr/P hybrid material, the cycle retention and the amount of removed Li residuals (LiOH, LiCO) were enhanced by the synergistic effect from Zr and P. The NCM sample coated with a Zr/P layer with a Zr/P ratio of 1 : 1 exhibited an increase in the initial capacity (209.3 mA h g) compared to the pristine sample (207.4 mA h g) at 0.1C, owing to the formation of the coating layer. The capacity retention of the Zr/P coated sample (92.4% at the 50th cycle) was also improved compared to that of the pristine NCM sample (90.6% at the 50th cycle). Moreover, the amount of Li residuals in the Zr/P coated NCM sample was greatly reduced from 3693 ppm (pristine NCM) to 2525 ppm (Zr/P = 5 : 5).
Ni-rich layered oxides are considered to be a promising cathode material with high capacity, and their surface structure should be extensively explored to understand the complex associated phenomena. We investigated the surface stability and morphology of LiNiO as a representative of these materials by using density functional theory calculations. The results reveal that the Li-exposed surfaces have lower energies than the oxygen surfaces, irrespective of the facets, and the Ni-exposed ones are the least stable. The equilibrium morphology can vary from truncated trigonal bipyramid to truncated egg shape, according to the chemical potential, whose range is confined by the phase diagram. Moreover, the electrochemical window of stable facets is found to strongly depend on the surface elements rather than the facet directions. Contrary to the stable Li surfaces, oxygen exposure on the surface considerably lowers the Fermi level to the level of electrolyte, thereby accelerating oxidative decomposition of the electrolyte on the cathode surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.