A mild screen-printing method was developed to coat conductive oxide surfaces (here: fluorine-doped tin oxide) with micrometer-thick layers of presynthesized calcium manganese oxide (Ca-birnessite) particles. After optimization steps concerning the printing process and layer thickness, electrodes were obtained that could be used as corrosion-stable water-oxidizing anodes at pH 7 to yield current densities of 1 mA cm(-2) at an overpotential of less than 500 mV. Analyses of the electrode coatings of optimal thickness (≈10 μm) indicated that composition, oxide phase, and morphology of the synthetic Ca-birnessite particles were hardly affected by the screen-printing procedure. However, a more detailed analysis by X-ray absorption spectroscopy revealed small modifications of both the Mn redox state and the structure at the atomic level, which could affect functional properties such as proton conductivity. Furthermore, the versatile new screen-printing method was used for a comparative study of various transition-metal oxides concerning electrochemical water oxidation under "artificial leaf conditions" (neutral pH, fairly low overpotential and current density), for which a general activity ranking of RuO2 >Co3 O4 ≈(Ca)MnOx ≈NiO was observed. Within the group of screened manganese oxides, Ca-birnessite performed better than "Mn-only materials" such as Mn2 O3 and MnO2 .
Intelligent game-based learning environments integrate commercial game technologies with AI methods from intelligent tutoring systems and intelligent narrative technologies. This article introduces the CRYSTAL ISLAND intelligent game-based learning environment, which has been under development in the authors’ laboratory for the past seven years. After presenting CRYSTAL ISLAND, the principal technical problems of intelligent game-based learning environments are discussed: narrative-centered tutorial planning, student affect recognition, student knowledge modeling, and student goal recognition. Solutions to these problems are illustrated with research conducted with the CRYSTAL ISLAND learning environment.
In this work we present a study on the adsorption of linear alkyl aldehydes physisorbed from their bulk liquid onto a graphite substrate combining calorimetry for all homologues from C6 to C13, with more detailed diffraction, incoherent neutron scattering, and scanning tunneling microscopy techniques for one (C12) representative member. We identify solid monolayer formation for some of these species for alkyl chain lengths of 6 to 13 carbons at high surface coverages. The C12 monolayer structure is determined to be most likely Pgg and this structure is discussed in terms of the importance of dipolar interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.