Laboratory mouse, Mus musculus, is one of the most important animal tools in biomedical research. Functional characterization of the mouse genes, hence, has been a long-standing goal in mammalian and human genetics. Although large-scale knockout phenotyping is under progress by international collaborative efforts, a large portion of mouse genome is still poorly characterized for cellular functions and associations with disease phenotypes. A genome-scale functional network of mouse genes, MouseNet, was previously developed in context of MouseFunc competition, which allowed only limited input data for network inferences. Here, we present an improved mouse co-functional network, MouseNet v2 (available at http://www.inetbio.org/mousenet), which covers 17 714 genes (>88% of coding genome) with 788 080 links, along with a companion web server for network-assisted functional hypothesis generation. The network database has been substantially improved by large expansion of genomics data. For example, MouseNet v2 database contains 183 co-expression networks inferred from 8154 public microarray samples. We demonstrated that MouseNet v2 is predictive for mammalian phenotypes as well as human diseases, which suggests its usefulness in discovery of novel disease genes and dissection of disease pathways. Furthermore, MouseNet v2 database provides functional networks for eight other vertebrate models used in various research fields.
Aromadendrin, a flavonol, has been reported to possess a variety of pharmacological activities such as anti-inflammatory, antioxidant, and anti-diabetic properties. However, the underlying mechanism by which aromadendrin exerts its biological activity has not been extensively demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of aromadedrin in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Aromadendrin significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2. In accordance, aromadendrin attenuated LPSinduced overexpression iNOS and COX-2. In addition, aromadendrin significantly suppressed LPS-induced degradation of IκB, which sequesters NF-κB in cytoplasm, consequently inhibiting the nuclear translocation of pro-inflammatory transcription factor NF- κB. To elucidate the underlying signaling mechanism of anti-inflammatory activity of aromadendrin, MAPK signaling pathway was examined. Aromadendrin significantly attenuated LPS-induced activation of JNK, but not ERK and p38, in a concentration-dependent manner. Taken together, the present study clearly demonstrates that aromadendrin exhibits anti-inflammatory activity through the suppression of nuclear translocation of NF-κB and phosphorylation of JNK in LPS-stimulated RAW 264.7 macrophage cells.
Derivatives of caffeic acid have been reported to possess diverse pharmacological properties such as anti-inflammatory, anti-tumor, and neuroprotective effects. However, the biological activity of methyl p-hydroxycinnamate, an ester derivative of caffeic acid, has not been clearly demonstrated. This study aimed to elucidate the anti-inflammatory mechanism of methyl p-hydroxycinnamate in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Methyl p-hydroxycinnamate significantly inhibited LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2 and the protein expression of iNOS and COX-2. Methyl p-hydroxycinnamate also suppressed LPS-induced overproduction of pro-inflammatory cytokines such as IL-1β and TNF-α. In addition, methyl p-hydroxycinnamate significantly suppressed LPS-induced degradation of IκB, which retains NF-κB in the cytoplasm, consequently inhibiting the transcription of pro-inflammatory genes by NF-κB in the nucleus. Methyl p-hydroxycinnamate exhibited significantly increased Akt phosphorylation in a concentration-dependent manner. Furthermore, inhibition of Akt signaling pathway with wortmaninn abolished methyl p-hydroxycinnamate-induced Akt phosphorylation. Taken together, the present study clearly demonstrates that methyl p-hydroxycinnamate exhibits anti-inflammatory activity through the activation of Akt signaling pathway in LPS-stimulated RAW264.7 macrophage cells.
Anesthetic management of pediatric liver transplantation in a patient with osteogenesis imperfecta (OI) requires tough decisions and comprehensive considerations of the cascade of effects that may arise and the required monitoring. Total intravenous anesthesia (TIVA) with propofol and remifentanil was chosen as the main anesthetic strategy. Malignant hyperthermia (MH), skeletal fragility, anhepatic phase during liver transplantation, uncertainties of TIVA in children, and propofol infusion syndrome were considered and monitored. There were no adverse events during the operation. Despite meticulous precautions with regard to the risk of MH, there was an episode of high fever (40℃) in the ICU a few hours after the operation, which was initially feared as MH. Fortunately, MH was ruled out as the fever subsided soon after hydration and antipyretics were given. Although the delivery of supportive care and the administration of dantrolene are the core principles in the management of MH, perioperative fever does not always mean a MH in patients at risk for MH, and other common causes of fever should also be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.