We have previously demonstrated that hypoxia stimulates adipose-derived stem cells (ASCs) through the generation of reactive oxygen species (ROS). However, the precise mechanism involved in the ROS generation by ASCs is not well understood. We sought to investigate in this work: (1) which subtype of NADPH oxidase (Nox) is primarily expressed in ASCs; (2) where Nox4 is localized in ASCs; and (3) whether silencing of Nox4 attenuates hypoxia-enhanced function of ASC. We used 2¢,7¢-dichlorofluorescin diacetate (DCF-DA) as an indicator of ROS generation and found that the fluorescence intensity of DCF-DA was significantly increased after hypoxia exposure (2% oxygen). In addition, hypoxia enhanced the proliferation and migration of ASCs and upregulated the mRNA expression of Oct4 and Rex1. Quantitative analysis of mRNA expression of Nox family in ASCs demonstrated that Nox4 is primarily expressed in ASCs, while immunofluorescence assay showed that Nox4 is mainly localized in the perinuclear region and overlaps with Mitotracker, a mitochondria marker. Silencing of Nox4 by siRNA treatment downregulated the RNA and protein expression of Nox4, which significantly reduced the ROS generation under hypoxia. In addition, Nox4 silencing significantly reduced the proliferation and migration of ASCs and downregulated the mRNA expression of Oct4 and Rex1. Phosphorylation of platelet-derived growth factor receptor-b, AKT, and ERK1/2 also diminished following Nox4 silencing. In a nutshell, these results suggest that Nox4 is primarily expressed in ASCs and plays a pivotal role in the hypoxia-enhanced stimulation of ASCs.
Generation of reactive oxygen species (ROS) by NADPH oxidase 4 (Nox4) induces the proliferation and migration of adipose-derived stem cells (ASCs). However, the functional role of mitochondrial ROS (mtROS) generation in ASCs is unknown. Therefore, we have investigated whether hypoxia induces the differentiation of ASCs via ROS generation. We also have tried to identify the cellular mechanisms of ROS generation underlying adipocyte differentiation. Hypoxia (2%) and ROS generators, such as antimycin and rotenone, induced adipocyte differentiation, which was attenuated by an ROS scavenger. Although Nox4 generates ROS and regulates proliferation of ASCs, Nox4 inhibition or Nox4 silencing did not inhibit adipocyte differentiation; indeed fluorescence intensity of mito-SOX increased in hypoxia, and treatment with mito-CP, a mtROS scavenger, significantly reduced hypoxia-induced adipocyte differentiation. Phosphorylation of Akt and mTOR was induced by hypoxia, while inhibition of these molecules prevented adipocyte differentiation. Thus hypoxia induces adipocyte differentiation by mtROS generation, and the PI3K/Akt/mTOR pathway is involved.
This work presents a novel barrier thin film based on an organic-inorganic nanolaminate, which consists of alternating nanolayers of self-assembled organic layers (SAOLs) and AlO. The SAOLs-AlO nanolaminated films were deposited using a combination of molecular layer deposition and atomic layer deposition techniques at 80 °C. Modulation of the relative thickness ratio of the SAOLs and AlO enabled control over the elastic modulus and stress in the films. Furthermore, the SAOLs-AlO thin film achieved a high degree of mechanical flexibility, excellent transmittance (>95%), and an ultralow water-vapor transmission rate (2.99 × 10 g m day), which represents one of the lowest permeability levels ever achieved by thin film encapsulation. On the basis of its outstanding barrier properties with high flexibility and transparency, the nanolaminated film was applied to a commercial OLEDs panel as a gas-diffusion barrier film. The results showed defect propagation could be significantly inhibited by incorporating the SAOLs layers, which enhanced the durability of the panel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.