Stylized facts on asset return are fat-tail, asymmetry, volatility clustering and structure changes. This paper simultaneously captures these characteristics by introducing a multi-regime models: Finite mixture distribution and regime switching GARCH model. Analyzing the daily KOSPI return from 4 th January 2000 to 30 th June 2014, we find that a two-component mixture of t distribution is a good candidate to describe the shape of the KOSPI return from unconditional and conditional perspectives. Empirical results suggest that the equality assumption on the shape parameter of t distribution yields better discrimination of heterogeneity component in return data. We report the strong regime-dependent characteristics in volatility dynamics with high persistence and asymmetry by employing a regime switching GJR-GARCH model with t innovation model. Compared to two sub-samples, PreCrisis (January 2003 ∼ December 2007) and Post-Crisis (January 2010 ∼ June 2014), we find that the degree of persistence in the Pre-Crisis is higher than in the Post-Crisis along with a strong asymmetry in the low-volatility (high-volatility) regime during the Pre-Crisis (Post-Crisis).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.