We consider a system of nonlinear partial differential equations modelling the steady motion of an incompressible non-Newtonian fluid, which is chemically reacting. The governing system consists of a steady convection-diffusion equation for the concentration and the generalized steady Navier-Stokes equations, where the viscosity coefficient is a power-law type function of the shear-rate, and the coupling between the equations results from the concentrationdependence of the power-law index. This system of nonlinear partial differential equations arises in mathematical models of the synovial fluid found in the cavities of moving joints. We construct a finite element approximation of the model and perform the mathematical analysis of the numerical method in the case of two space dimensions. Key technical tools include discrete counterparts of the Bogovskiȋ operator, De Giorgi's regularity theorem in two dimensions, and the Acerbi-Fusco Lipschitz truncation of Sobolev functions, in function spaces with variable integrability exponents.
We consider a system of nonlinear partial differential equations describing the motion of an incompressible chemically reacting generalized Newtonian fluid in three space dimensions. The governing system consists of a steady convection-diffusion equation for the concentration and a generalized steady power-law-type fluid flow model for the velocity and the pressure, where the viscosity depends on both the shear-rate and the concentration through a concentration-dependent power-law index. The aim of the paper is to perform a mathematical analysis of a finite element approximation of this model. We formulate a regularization of the model by introducing an additional term in the conservation-ofmomentum equation and construct a finite element approximation of the regularized system. We show the convergence of the finite element method to a weak solution of the regularized model and prove that weak solutions of the regularized problem converge to a weak solution of the original problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.