The authors propose a novel PAR image-based cardiac motion estimation and compensation algorithm. The algorithm requires an angular scan range of less than 360°. The excellent performance of the proposed algorithm is illustrated by using digital XCAT and physical dynamic cardiac phantom datasets.
We propose a framework for head motion correction in an axial CT scan, which consists of motion estimation and compensation steps. Two image-based ME algorithms for rigid motion tracking are developed according to the degree of head motion. The estimated motion information is then used for MC image reconstruction. Both motion estimation and compensation algorithms are based on computationally efficient filtered backprojection. Excellent performance of the proposed framework is illustrated by means of simulations using a numerical phantom and experiments using a physical phantom.
Even though the X-ray Computed Tomography (CT) scan is considered suitable for fast imaging, motion-artifact-free cardiac imaging is still an important issue, because the gantry rotation speed is not fast enough compared with the heart motion. To obtain a heart image with less motion artifacts, a motion estimation (ME) and motion compensation (MC) approach is usually adopted. In this paper, we propose an ME/MC algorithm that can estimate a nonlinear heart motion model from a sinogram with a rotation angle of less than 360°. In this algorithm, we first assume the heart motion to be nonrigid but linear, and thereby estimate an initial 4-D motion vector field (MVF) during a half rotation by using conjugate partial angle reconstructed images, as in our previous ME/MC algorithm. We then refine the MVF to determine a more accurate nonlinear MVF by maximizing the information potential of a motion-compensated image. Finally, MC is performed by incorporating the determined MVF into the image reconstruction process, and a time-resolved heart image is obtained. By using a numerical phantom, a physical cardiac phantom, and an animal data set, we demonstrate that the proposed algorithm can noticeably improve the image quality by reducing motion artifacts throughout the image.
Cardiac X-ray computed tomography (CT) imaging is still challenging due to the cardiac motion during CT scanning, which leads to the presence of motion artifacts in the reconstructed image. In response, many cardiac X-ray CT imaging algorithms have been proposed, based on motion estimation (ME) and motion compensation (MC), to improve the image quality by alleviating the motion artifacts in the reconstructed image. However, these ME/MC algorithms are mainly based on an axial scan or a low-pitch helical scan. In this paper, we propose a ME/MC-based cardiac imaging algorithm for the data set acquired from a helical scan with an ordinary pitch of around 1.0 so as to obtain the whole cardiac image within a single scan of short time without ECG gating. In the proposed algorithm, a sequence of partial angle reconstructed (PAR) images is generated by using consecutive parts of the sinogram, each of which has a small angular span. Subsequently, an initial 4-D motion vector field (MVF) is obtained using multiple pairs of conjugate PAR images. The 4-D MVF is then refined based on an image quality metric so as to improve the quality of the motion-compensated image. Finally, a time-resolved cardiac image is obtained by performing motion-compensated image reconstruction by using the refined 4-D MVF. Using digital XCAT phantom data sets and a human data set commonly obtained via a helical scan with a pitch of 1.0, we demonstrate that the proposed algorithm significantly improves the image quality by alleviating motion artifacts.
Purpose: The digital panoramic radiography is widely used in dental clinics and provides the anatomical information of the intraoral structure along the predefined arc-shaped path. Since the intraoral structure varies depending on the patient, however, it is nearly impossible to design a common and static focal path or plane fitted to the dentition of all patients. In response, we introduce an imaging algorithm for digital panoramic radiography that can provide a focused panoramic radiographic image for all patients, by automatically estimating the best focal plane for each patient. Methods: The aim of this study is to improve the image quality of dental panoramic radiography based on a three-dimensional (3D) dynamic focal plane. The plane is newly introduced to represent the arbitrary 3D intraoral structure of each patient. The proposed algorithm consists of three steps: preprocessing, focal plane estimation, and image reconstruction. We first perform preprocessing to improve the accuracy of focal plane estimation. The 3D dynamic focal plane is then estimated by adjusting the position of the image plane so that object boundaries in the neighboring projection data are aligned or focused on the plane. Finally, a panoramic radiographic image is reconstructed using the estimated dynamic focal plane. Results: The proposed algorithm is evaluated using a numerical phantom dataset and four clinical human datasets. In order to examine the image quality improvement owing to the proposed algorithm, we generate panoramic radiographic images based on a conventional static focal plane and estimated 3D dynamic focal planes, respectively. Experimental results show that the image quality is dramatically improved for all datasets using the 3D dynamic focal planes that are estimated from the proposed algorithm. Conclusions: We propose an imaging algorithm for digital panoramic radiography that provides improved image quality by estimating dynamic focal planes fitted to each individual patient's intraoral structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.