The development of pressure sensors that are effective over a broad range of pressures is crucial for the future development of electronic skin applicable to the detection of a wide pressure range from acoustic wave to dynamic human motion. Here, we present flexible capacitive pressure sensors that incorporate micropatterned pyramidal ionic gels to enable ultrasensitive pressure detection. Our devices show superior pressure-sensing performance, with a broad sensing range from a few pascals up to 50 kPa, with fast response times of <20 ms and a low operating voltage of 0.25 V. Since high-dielectric-constant ionic gels were employed as constituent sensing materials, an unprecedented sensitivity of 41 kPa in the low-pressure regime of <400 Pa could be realized in the context of a metal-insulator-metal platform. This broad-range capacitive pressure sensor allows for the efficient detection of pressure from a variety of sources, including sound waves, a lightweight object, jugular venous pulses, radial artery pulses, and human finger touch. This platform offers a simple, robust approach to low-cost, scalable device design, enabling practical applications of electronic skin.
Prior to the advent of the next-generation heater for wearable/on-body electronic devices, various properties are required, including conductivity, transparency, mechanical reliability, and conformability. Expansion to two-dimensional (2D) structure of metallic nanowires based on network-and mesh-type geometries has been widely exploited for realizing these heaters. However, the routes led to many drawbacks such as the lowdensity cross-bar linking, self-aggregation of wire, and high junction resistance. Although 2D carbon nanomaterials such as graphene and reduced graphene oxide (rGO) have shown their potentials for the purpose, CVD-grown graphene with sufficiently high conductivity was limited due to its poor processability for large-area applications, while rGO fabricated with a complex reduction process involving the use of toxic chemicals suffered from a low electrical conductivity. In this study, we demonstrate a simple and robust process, utilizing electrostatic assembling of negatively charged MXene flakes on a positively treated surface of substrate, for fabricating a metal-like 2D MXene thin film heater (TFH). Our TFH showed a high optical property (>65%), low sheet resistance (215 Ω/sq), fast electrothermal response (within dozens of seconds) with an intrinsically high electrical conductivity, and mechanical flexibility (up to 180°bending). Its capability for forming a firm and stable ionic-type interface with a counterpart surface allows us to develop a shape-adaptable and patchable thread heater (TH) that can be shaped on diverse substrates even under harsh conditions of conventional sewing or weaving processes. This work suggests that our shape-adaptable MXene heaters are potentially suitable not only for wearable devices for local heating and defrosting but also for a variety of emerging applications of soft actuators and wearable/flexible healthcare monitoring and thermotherapy.
Self-powered energy harvesters utilizing triboelectric effect and electrostatic induction have been widely studied, leading in the materials viewpoint to numerous material pairs for facile charge separation upon repetitive contacts with elaborate topological structures. Here, we present a simple but robust triboelectric platform based on a molecularly engineered surface triboelectric nanogenerator by self-assembled monolayers (METS). Triboelectric surface charge density of a substrate was readily controlled by the variation of end-functional groups of self-assembled monolayers (SAMs). In particular, by employing fluorine terminated SAMs, we are able to develop a METS with the maximum open circuit voltage and short circuit current of 105 V and 27 μA, respectively, under relatively gentle mechanical contacts with the 3N vertical force at 1.25 Hz. The power density of the device was 1.8 W/m 2 at the load resistance of 10 MΩ more than 60 times greater than that of an unmodified dielectric/Al device. Moreover, our approach with SAMs was extended to various types of surfaces including fabrics of silk, cotton, and poly(ethylene terephthalate) (PET) and a PET film, and the results of singlefriction-surface triboelectric nanogenerators with these materials offers a facile and universal guideline for designing triboelectic materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.