Many studies have been conducted to accurately predict the correlations between As and heavy metals content in contaminated soil and cultivated crops; however, due to the low correlation between the two, few clear results were obtained to date. This study aimed to create statistical models that predict the As content transferred from soil to polished rice, considering the physicochemical properties of the soil, as well as the total content and the single-extracted content of As in the soil. Predictive models were derived through regression analysis while sequentially classifying soil samples according to pH, soluble As content by single extraction, and organic matter content of the soil. The correlation coefficients between the As content in 80 polished rice and total As content and Mehlich soluble As content in the soil were low, 0.533 and 0.493, respectively. However, the models derived after sequential classification of the soil by pH, a ratio of total As content to Mehlich soluble As content, and organic matter content greatly increased the predictive power; ① 0.963 for 13 soils with a pH higher than 6.5, ② 0.849 for 15 soils with pH lower than 6.5 and a high ratio of As Tot /As Mehlich , ③ 0.935 for 30 soils with pH lower than 6.5, a high ratio of As Tot /As Mehlich , and organic matter content lower than 8.5%. The suggested prediction model of As transfer from soil to polished rice derived by soil classification may serve as a statistically significant methodology in establishing a rice cultivation standard for arsenic-contaminated soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.