This paper presents an algorithm for planning waypoints for the operation of a surveillance mission using cooperative unmanned aerial vehicles (UAVs) in a given map. This algorithm is rather simple and intuitive; therefore, this algorithm is easily applied to actual scenarios as well as easily handled by operators. It is assumed that UAVs do not possess complete information about targets; therefore, kinematics, intelligence, and so forth of the targets are not considered when the algorithm is in operation. This assumption is reasonable since the algorithm is solely focused on a surveillance mission. Various parameters are introduced to make the algorithm flexible and adjustable. They are related to various cost functions, which is the main idea of this algorithm. These cost functions consist of certainty of map, waypoints of co-worker UAVs, their own current positions, and a level of interest. Each cost function is formed by simple and intuitive equations, and features are handled using the aforementioned parameters.
This paper proposes a formation control algorithm to create separated multiple formations for an undirected networked multi-agent system while preserving the network connectivity and avoiding collision among agents. Through the modified multi-consensus technique, the proposed algorithm can simultaneously divide a group of multiple agents into any arbitrary number of desired formations in a decentralized manner. Furthermore, the agents assigned to each formation group can be easily reallocated to other formation groups without network topological constraints as long as the entire network is initially connected; an operator can freely partition agents even if there is no spanning tree within each subgroup. Besides, the system can avoid collision without loosing the connectivity even during the transient period of formation by applying the existing potential function based on the network connectivity estimation. If the estimation is correct, the potential function not only guarantees the connectivity maintenance but also allows some extra edges to be broken if the network remains connected. Numerical simulations are performed to verify the feasibility and performance of the proposed multi-subgroup formation control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.