Cell concentration is a critical process in biological assays and clinical diagnostics for the pre-treatment of extremely rare disease-related cells. The conventional technique for sample preconcentration and centrifugation has the limitations of a batch process requiring expensive and large equipment. Therefore, a high-throughput continuous cell concentration technique needs to be developed. However, in single-pass operation, the required concentration ratio is hard to achieve. In this study, we propose a closed-loop continuous cell concentration system using a viscoelastic non-Newtonian fluid. For miniaturized and integrated systems, two piezoelectric pumps were adopted. The pumping capability generated by a piezoelectric pump in a microfluidic channel was evaluated depending on the applied voltage, frequency, sample viscosity, and channel length. The concentration performance of the device was evaluated using 13 μm particles and white blood cells (WBCs) with different channel lengths and voltages. In the closed-loop system, the focused cells collected at the center outlet were sent back to the inlet, while the buffer solution was removed to the side outlets. Finally, to expand the clinical applicability of our closed-loop system, WBCs in lysed blood samples with 70% hematocrit and prostate cancer cells in urine samples were used. Using the closed-loop system, WBCs were concentrated by ~63.4 ± 0.8-fold within 20 min to a final volume of 160 μL using 10 mL of lysed blood sample with 70% hematocrit (~3 cP). In addition, prostate cancer cells in 10 mL urine samples were concentrated by ~64.1-fold within ~11 min due to low viscosity (~1 cP).
An early and accurate diagnosis of Candida albicans is critical for the rapid antifungal treatment of candidemia, a mortal bloodstream infection. This study demonstrates viscoelastic microfluidic techniques for continuous separation, concentration, and subsequent washing of Candida cells in the blood. The total sample preparation system contains two-step microfluidic devices: a closed-loop separation and concentration device and a co-flow cell-washing device. To determine the flow conditions of the closed-loop device, such as the flow rate factor, a mixture of 4 and 13 μm particles was used. Candida cells were successfully separated from the white blood cells (WBCs) and concentrated by 74.6-fold in the sample reservoir of the closed-loop system at 800 μL/min with a flow rate factor of 3.3. In addition, the collected Candida cells were washed with washing buffer (deionized water) in the microchannels with an aspect ratio of 2 at a total flow rate of 100 μL/min. Finally, Candida cells at extremely low concentrations (Ct > 35) became detectable after the removal of WBCs, the additional buffer solution in the closed-loop system (Ct = 30.3 ± 1.3), and further removal of blood lysate and washing (Ct = 23.3 ± 1.6).
Water contamination is a critical issue that threatens global public health. To enable the rapid and precise monitoring of pathogen contamination in drinking water, a concentration technique for bacterial cells is required to address the limitations of current detection methods, including the culture method and polymerase chain reaction. Here we present a viscoelastic microfluidic device for the continuous concentration of bacterial cells. To validate the device performance for cell concentration, the flow characteristics of 2-μm particles were estimated in viscoelastic fluids at different concentrations and flow rates. Based on the particle flow distributions, the flow rate factor, which is defined as the ratio of the inlet flow rate to the outlet flow rate at the center outlet, was optimized to achieve highly concentrated bacterial cells by removal of the additional suspending medium. The flow characteristics of 0.5-, 0.7-, and 1.0-μm-diameter particles were evaluated to consider the effect of a wide spectrum of bacterial size distribution. Finally, the concentration factor of bacterial cells, Staphylococcus aureus, suspended in a 2000-ppm polyethylene oxide solution was found to be 20.6-fold at a flow rate of 20 μL/min and a flow rate factor of 40.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.