Persistent homology is a powerful tool in topological data analysis (TDA) to compute, study, and encode efficiently multi-scale topological features and is being increasingly used in digital image classification. The topological features represent a number of connected components, cycles, and voids that describe the shape of data. Persistent homology extracts the birth and death of these topological features through a filtration process. The lifespan of these features can be represented using persistent diagrams (topological signatures). Cubical homology is a more efficient method for extracting topological features from a 2D image and uses a collection of cubes to compute the homology, which fits the digital image structure of grids. In this research, we propose a cubical homology-based algorithm for extracting topological features from 2D images to generate their topological signatures. Additionally, we propose a novel score measure, which measures the significance of each of the sub-simplices in terms of persistence. In addition, gray-level co-occurrence matrix (GLCM) and contrast limited adapting histogram equalization (CLAHE) are used as supplementary methods for extracting features. Supervised machine learning models are trained on selected image datasets to study the efficacy of the extracted topological features. Among the eight tested models with six published image datasets of varying pixel sizes, classes, and distributions, our experiments demonstrate that cubical homology-based machine learning with the deep residual network (ResNet 1D) and Light Gradient Boosting Machine (lightGBM) shows promise with the extracted topological features.
Persistent homology is a powerful tool in topological data analysis (TDA) to compute, study and encode efficiently multi-scale topological features and is being increasingly used in digital image classification. The topological features represent number of connected components, cycles, and voids that describe the shape of data. Persistent homology extracts the birth and death of these topological features through a filtration process. The lifespan of these features can represented using persistent diagrams (topological signatures). Cubical homology is a more efficient method for extracting topological features from a 2D image and uses a collection of cubes to compute the homology, which fits the digital image structure of grids. In this research, we propose a cubical homology-based algorithm for extracting topological features from 2D images to generate their topological signatures. Additionally, we propose a score, which measures the significance of each of the sub-simplices in terms of persistence. Also, gray level co-occurrence matrix (GLCM) and contrast limited adapting histogram equalization (CLAHE) are used as a supplementary method for extracting features. Machine learning techniques are then employed to classify images using the topological signatures. Among the eight tested algorithms with six published image datasets with varying pixel sizes, classes, and distributions, our experiments demonstrate that cubical homology-based machine learning with deep residual network (ResNet 1D) and Light Gradient Boosting Machine (lightGBM) shows promise with the extracted topological features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.