We report on the findings of a blind challenge devoted to determining the frozencore, full configuration interaction (FCI) ground state energy of the benzene molecule in a standard correlation-consistent basis set of double-ζ quality. As a broad international endeavour, our suite of wave function-based correlation methods collectively represents a diverse view of the high-accuracy repertoire offered by modern electronic structure theory. In our assessment, the evaluated high-level methods are all found to qualitatively agree on a final correlation energy, with most methods yielding an estimate of the FCI value around −863 mE H. However, we find the root-mean-square deviation of the energies from the studied methods to be considerable (1.3 mE H), which in light of the acclaimed performance of each of the methods for smaller molecular systems clearly displays the challenges faced in extending reliable, near-exact correlation methods to larger systems. While the discrepancies exposed by our study thus emphasize the fact that the current state-of-the-art approaches leave room for improvement, we still expect the present assessment to provide a valuable community resource for benchmark and calibration purposes going forward.
Relaxation of the photoexcited thymine in the gas-phase shows an unusually long excited-state lifetime, previously attributed to trapping in the absorbing excited state (S 2 -trapping mechanism).Here, we investigate this mechanism using the non-adiabatic molecular dynamics (NAMD) simulations combined with the recently developed Mixed Reference Spin-Flip (MRSF)-TDDFT method. We show that the S 2 -trapping was an artifact caused by an insufficient account of electron correlation in the electronic structure methodologies used for NAMD. The current work predicts instead an S 1 -trapping mechanism with two lifetimes, τ 1 =30±1 fs and τ 2 =6.1±0.035 ps, quantitatively consistent with time-resolved experiments. Upon excitation to S 2 (ππ * ) state, thymine undergoes an ultrafast internal conversion from S 2 → S 1 (ca. 30 fs) and resides 1 around the minimum on the S 1 (n O π * ) surface slowly decaying to the ground state (ca. 6.1 ps). The S 2 →S 1 internal conversion is mediated by bond length alternation stretching, which repeatedly passes through a newly found planar conical intersection region. The subsequent S 1 →S 0 internal conversion occurs through several conical intersections involving slow puckering motions of the pyrimidine ring.
The mixed-reference spin−flip time-dependent density functional theory (MRSF-TD-DFT) method eliminates the erroneous spin contamination of the SF-TD-DFT methodology, while retaining the conceptual and practical simplicity of the latter. The availability of the analytic gradient of the energy of the MRSF-TD-DFT response states enables automatic geometry optimization of the targeted states. Here, we apply the new method to optimize the geometry of several S 1 /S 0 conical intersections occurring in typical organic molecules. We demonstrate that MRSF-TD-DFT is capable of producing the correct double-cone topology of the intersections and describing the geometry of the lowest-energy conical intersections and their relative energies with accuracy matching that of the best multireference wavefunction ab initio methods. In this regard, MRSF-TD-DFT differs from many popular singlereference methods, such as, e.g., the linear response TD-DFT method, which fail to produce the correct topology of the intersections. As the new methodology completely eliminates the ambiguity with the identification of the response states as proper singlets or triplets, which is plaguing the SF-TD-DFT calculations, it can be used for automatic geometry optimization and molecular dynamic simulations not requiring constant human intervention.
Due to their multiconfigurational nature featuring strong electron correlation, accurate description of diradicals and diradicaloids is a challenge for quantum chemical methods. The recently developed mixed-reference spin-flip (MRSF)-TDDFT method is capable of describing the multiconfigurational electronic states of these systems while avoiding the spin-contamination pitfalls of SF-TDDFT. Here, we apply MRSF-TDDFT to study the adiabatic singlet–triplet (ST) gaps in a series of well-known diradicals and diradicaloids. On average, MRSF displays a very high prediction accuracy of the adiabatic ST gaps with the mean absolute error (MAE) amounting to 0.14 eV. In addition, MRSF is capable of accurately describing the effect of the Jahn–Teller distortion occurring in the trimethylenemethane diradical, the violation of the Hund rule in a series of the didehydrotoluene diradicals, and the potential energy surfaces of the didehydrobenzene (benzyne) diradicals. A convenient criterion for distinguishing diradicals and diradicaloids is suggested on the basis of the easily obtainable quantities. In all of these cases, which are difficult for the conventional methods of density functional theory (DFT), MRSF shows results consistent with the experiment and the high-level ab initio computations. Hence, the present study documents the reliability and accuracy of MRSF and lays out the guidelines for its application to strongly correlated molecular systems.
The mixed-reference spin-flip (MRSF) time-dependent density functional theory (TDDFT) method eliminates the notorious spin contamination of SF-TDDFT, thus enabling identification of states of proper spin-symmetry for automatic geometry optimization and molecular dynamics simulations. Here, we analyze and optimize the MRSF-TDDFT in the calculations of the vertical excitation energies (VEEs) and the singlet−triplet (ST) gaps. The dependence of the obtained VEEs and ST gaps on the intrinsic parameters of the MRSF-TDDFT method is investigated, and prescriptions for the proper use of the method are formulated. For VEEs, MRSF-TDDFT displays similar or better accuracy than SF-TDDFT (ca. 0.5 eV), while considerably outperforming the LR-TDDFT for the ST gaps. As a result, a new functional of STG1X (dubbed here), especially for ST gaps is suggested on the basis of splitting between the components of the atomic multiplets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.