Digital propagation of an off-axis hologram can provide the quantitative phase-contrast image if the exact distance between the sensor plane (such as CCD) and the reconstruction plane is correctly provided. In this paper, we present a deep-learning convolutional neural network with a regression layer as the top layer to estimate the best reconstruction distance. The experimental results obtained using microsphere beads and red blood cells show that the proposed method can accurately predict the propagation distance from a filtered hologram. The result is compared with the conventional automatic focus-evaluation function. Additionally, our approach can be utilized at the single-cell level, which is useful for cell-to-cell depth measurement and cell adherent studies.
Few studies classified and predicted hypertension using blood pressure (BP)-related determinants in a deep learning algorithm. The objective of this study is to develop a deep learning algorithm for the classification and prediction of hypertension with BP-related factors based on the Korean Genome and Epidemiology Study-Ansan and Ansung baseline survey. We also investigated whether energy intake adjustment is adequate for deep learning algorithms. We constructed a deep neural network (DNN) in which the number of hidden layers and the number of nodes in each hidden layer are experimentally selected, and we trained the DNN to diagnose hypertension using the dataset while varying the energy intake adjustment method in four ways. For comparison, we trained a decision tree in the same way. Experimental results showed that the DNN performs better than the decision tree in all aspects, such as having higher sensitivity, specificity, F1-score, and accuracy. In addition, we found that unlike general machine learning algorithms, including the decision tree, the DNNs perform best when energy intake is not adjusted. The result indicates that energy intake adjustment is not required when using a deep learning algorithm to classify and predict hypertension with BP-related factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.