Advance in wet chemistry enables the sophisticated design of nanocrystal quantum dots (QDs) and allows unprecedented color purity and brightness, promising their useful applications in a variety of light-emitting applications. A representative example is core/shell heterostructures, in which charge carriers are effectively decoupled from structural artifacts to generate photons efficiently. Despite the development of widely accepted synthetic protocols for Cd- or Pb-based QDs, the progress in heterostructuring environmentally benign QDs has been lagging behind, and so is the practical use of these QDs. Herein, we present a design principle for InP/ZnSe x S1–x heterostructured QDs. A principal design approach is the growth of uniformly thick inorganic shell consisting of a ZnSe x S1–x inner shell and a ZnS outermost shell that effectively confines electrons from spreading inward of QDs. Comprehensive studies across synthesis, spectroscopic analysis, and calculation uncover that the presence of Se near the InP emissive core enables a uniform shell growth to an extended thickness and the S-rich exterior shell ensures the decoupling of the electron wave function from the surface trap states. Engineering composition profile across multiple shells enables us to realize InP/thick-shell QDs meeting the requirements of light-emitting applications such as high photoluminescence quantum yield, narrow spectral bandwidth, and enhanced photochemical robustness. We capitalize on bright, robust, and color-pure InP/ZnSe x S1–x /ZnS QDs with a range of emission wavelength covering from cyan to red regions by exemplifying their use in the primary-color light-emitting diodes (peak external quantum efficiency of 3.78 and 3.92% for green- and red-emitting ones, respectively).
Establishing multi-colour patterning technology for colloidal quantum dots is critical for realising high-resolution displays based on the material. Here, we report a solution-based processing method to form patterns of quantum dots using a light-driven ligand crosslinker, ethane-1,2-diyl bis(4-azido-2,3,5,6-tetrafluorobenzoate). The crosslinker with two azide end groups can interlock the ligands of neighbouring quantum dots upon exposure to UV, yielding chemically robust quantum dot films. Exploiting the light-driven crosslinking process, different colour CdSe-based core-shell quantum dots can be photo-patterned; quantum dot patterns of red, green and blue primary colours with a sub-pixel size of 4 μm × 16 μm, corresponding to a resolution of >1400 pixels per inch, are demonstrated. The process is non-destructive, such that photoluminescence and electroluminescence characteristics of quantum dot films are preserved after crosslinking. We demonstrate that red crosslinked quantum dot light-emitting diodes exhibiting an external quantum efficiency as high as 14.6% can be obtained.
The potential profile and the energy level offset of core/shell heterostructured nanocrystals (h-NCs) determine the photophysical properties and the charge transport characteristics of h-NC solids. However, limited material choices for heavy metal-free III-V/II-VI h-NCs pose challenges in comprehensive control of the potential profile. Herein, we present an unprecedented approach to such control by steering dipole moments at the interface of III-V/II-VI h-NCs. The controllable heterovalency at the interface is responsible for interfacial dipole moments that result in the vacuum-level shift, providing an additional knob for the control of optical and electrical characteristics of h-NCs. We capitalize on the atomic precision with which to synthesize h-NCs by correlating interfacial dipole moments to photochemical stability and optoelectronic performance of resulting h-NCs.
Busulfan, a bifunctional alkylating agent, has been used as a conditioning regimen prior to allogeneic hematopoietic stem cell transplantation (HSCT). The aim of this study was to derive a novel once-daily intravenous (IV) busulfan dosing nomogram for pediatric patients undergoing HSCT using a population pharmacokinetic (PK) model. A population PK analysis was performed using 2183 busulfan concentrations in 137 pediatric patients (age: 0.6-22.2 years), who received IV busulfan once-daily for 4 days before undergoing HSCT. Based on the final population PK model, an optimal once-daily IV busulfan dosing nomogram was derived. The percentage of simulated patients achieving the daily target area under the concentration-time curve (AUC) by the new nomogram was compared with that by other busulfan dosing regimens including the FDA regimen, the EMA regimen, and the empirical once-daily regimen without therapeutic drug monitoring (TDM). A one-compartment open linear PK model incorporating patient's body surface area, age, dosing day, and aspartate aminotransferase as a significant covariate adequately described the concentration-time profiles of busulfan. An optimal dosing nomogram based on the PK model performed significantly better than the other dosing regimens, resulting in >60% of patients achieving the target AUC while the percentage of patients exceeding the toxic AUC level was kept <25% during the entire treatment period. A novel once-daily busulfan dosing nomogram for pediatric patients undergoing HSCT is useful for clinicians, particularly in a setting where TDM service is not readily available or to optimize the dose on day 1.
The charge injection imbalance into the quantum dot (QD) emissive layer of QD-based light-emitting diodes (QD-LEDs) is an unresolved issue that is detrimental to the efficiency and operation stability of devices. Herein, an integrated approach to harmonize the charge injection rates for bright and stable QD-LEDs is proposed. Specifically, the electronic characteristics of the hole transport layer (HTL) is delicately designed in order to facilitate the hole injection from the HTL into QDs and confine the electron overflow toward the HTL. The well-defined exciton recombination zone by the engineered QDs and HTL results in high performance with a peak luminance exceeding 410 000 cd/m 2 , suppressed efficiency roll-off characteristics (ΔEQE < 5% between 200 and 200 000 cd/m 2 ), and prolonged operational stability. The electric and optoelectronic analyses reveal the charge carrier injection mechanism at the interface between the HTL and QDs and provides the design principle of QD heterostructures and charge transport layers for high-performance QD-LEDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.