Obesity can cause various diseases and is a serious health concern. BMI, which is currently the popular measure for judging obesity, does not accurately classify obesity; it reflects the height and weight but ignores the characteristics of an individual’s body type. In order to overcome the limitations of classifying obesity using BMI, we considered 3-dimensional (3D) measurements of the human body. The scope of our study was limited to Korean subjects. In order to expand 3D body scan data clinically, 3D body scans, Dual-energy X-ray absorptiometry, and Bioelectrical Impedance Analysis data was collected pairwise for 160 Korean subjects. A machine learning-based obesity classification framework using 3D body scan data was designed, validated through Accuracy, Recall, Precision, and F1 score, and compared with BMI and BIA. In a test dataset of 40 people, BMI had the following values: Accuracy: 0.529, Recall: 0.472, Precision: 0.458, and F1 score: 0.462, while BIA had the following values: Accuracy: 0.752, Recall: 0.742, Precision: 0.751, and F1 score: 0.739. Our proposed model had the following values: Accuracy: 0.800, Recall: 0.767, Precision: 0.842, and F1 score: 0.792. Thus, our accuracy was higher than BMI as well as BIA. Our model can be used for obesity management through 3D body scans.
This study selected the most common illnesses in children and older adults and aimed to provide a customized degree of daily risk for each illness based on patient data for specific regions and illnesses. Sample medical data of one million people provided by the National Health Insurance Corporation and information regarding the meteorological environment and atmosphere from the Korea Meteorological Administration and a public data portal using application programing interface were collected. Learning and predictions were carried out with machine learning. Models with high R2 were selected and tuned to determine the optimal hyperparameter for predicting the degree of daily risk of an illness. Illnesses with an R2 value greater than 0.65 were considered significant. For children, these consisted of acute bronchitis, the common cold, rhinitis and tonsillitis, and middle ear inflammation. For older adults, they consisted of high blood pressure and heart disease, the common cold, esophageal inflammation and gastritis, acute bronchitis, eczema and dermatitis, and chronic bronchitis. This study provides the degree of daily risk for the most common illnesses in each age group. Furthermore, the results of this study are expected to raise awareness of illnesses that occur in certain climates and to help prevent them.
Knowing one's obesity group is very important for healthcare. Obesity can cause various diseases; however, BMI, which is the currently popular standard for judging obesity, does not accurately classify the obese group. This is because BMI just reflects height and weight, ignoring the characteristics of body type. Therefore, we present the idea that reflecting the three-dimensional (3D) measurements of the human body can better classify the obese group than BMI. To prove this, we recruited a total of 160 subjects and collected 3D body scans, Dual-energy X-ray absorptiometry (DXA), and Bioelectrical Impedance Analysis (BIA) data pairwise. Through this, 3D body scan data could be expanded clinically. We proposed a machine learning-based obesity classification framework using 3D body scan data, validated it through Accuracy, Recall, Precision, and F1 score, and compared it with BMI and BIA. BMI had the following values: Accuracy: 0.529, Recall: 0.472, Precision: 0.458, and F1 score: 0.462 while BIA had the following values: Accuracy: 0.752, Recall: 0.742, Precision: 0.751, and F1 score: 0.739. Our proposed model had the following values: Accuracy: 0.800, Recall: 0.767, Precision: 0.842, and F1 score: 0.792 and our accuracy was 80%, which is higher than either BMI at 52.9% or BIA at 75.2%. Our model can be used for obesity management through 3D body scans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.