Our investigation focuses on the performance of fullduplex systems where both nodes simultaneously exchange their signals using a single spectrum for two-way communication.To maximize the achievable sum rate for full-duplex systems in multi-spectrum environments, we address a new selection strategy that considers the channel state of both nodes. The achievable sum rate for a multi-spectral bi-directional full-duplex (M-BFD) system is obtained using the proposed selection strategy and compared with conventional multi-spectral bi-directional half-duplex (M-BHD) systems. We derive the achievable sum rate as closed-form expressions and quantify the effect of selection diversity on the achievable sum rates for M-BFD and M-BHD systems. In addition, we present practical-case Monte-Carlo simulation results by considering the effects of self-interference (SI) and channel correlation. The numerical results show that the achievable sum rate (ASR) gain for M-BFD is larger than that for M-BHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.