To enhance the on-current (I
ON) of a tunneling field-effect transistor (TFET), we investigated the structures of a TFET with a recessed active (RA) region, known as the “RA-TFET”, using three-dimensional (3D) simulation. The analyzed structure is different from the recessed dynamic random-access memory (DRAM) channel in terms of the positions of the source and drain. The benefit of this structure is that the tunneling length remains unchanged as the depth increases so that the current can be easily scaled up, thereby maintaining the subthreshold slope (SS) and active area. Using an RA-TFET with a 100 nm Si depth, a 9.45 × 10−7 A I
ON is achieved with a minimum SS of 35 mV/dec; in addition, we propose RA-TFET modifications to mitigate the ambipolar characteristics and reduce the capacitance between the gate and the drain (C
GD) by up to 40%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.