The crystalline quality of ZnO NR (nanorod) as a sensing material for visible blind ultraviolet PDs (photodetectors) critically depends on the SL (seed layer) material of properties, which is a key to high-quality nanocrystallite growth, more so than the synthesis method. In this study, we fabricated two different device structures of a gateless AlGaN/GaN HEMT (high electron mobility transistor) and a photoconductive PD structure with an IDE (interdigitated electrode) pattern implemented on a PET (polyethylene terephthalate) flexible substrate, and investigated the impact on device performance through the SL N2O plasma treatment. In case of HEMT-based PD, the highest current on-off ratio (~7) and spectral responsivity R (~1.5 × 105 A/W) were obtained from the treatment for 6 min, whereas the IDE pattern-based PD showed the best performance (on-off ratio = ~44, R = ~69 A/W) from the treatment for 3 min and above, during which a significant etch damage on PET substrates was produced. This improvement in device performance was due to the enhancement in NR crystalline quality as revealed by our X-ray diffraction, photoluminescence, and microanalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.