Grain growth in 8 mol% Y 2 O 3 -stabilized zirconia ceramics (8YSZ) under an electric current has been investigated. Enhanced grain growth on the cathode side starts at 1150°C, well below the conventional sintering temperature, while grain growth is dormant on the anode side until 1400°C. In fully dense samples, the grain size undergoes an abrupt transition, differing by a factor of more than 10 on the two sides. Porous samples also experience faster densification on the cathode side, but grain growth is postponed until full density is first reached. Estimated grain boundary diffusivity on the cathode side has an apparent activation energy about 1 eV lower than that of normal grain boundary diffusion. These results are attributed to supersaturated oxygen vacancies accumulated on the cathode side, causing cation reduction that lowers their migration barrier.
Without sensing any physical force, a neutral object in an ion conducting solid can move in a uniform electrochemical field by coupling a global ion wind with localized counterion diffusion at the interface. This happens to pores and gas bubbles at 840 °C in a fast O2− conductor, yttria‐stabilized zirconia (YSZ), despite having cations that are essentially frozen with lattice diffusivities 1012 times slower than the O2− diffusivity. Through‐thickness migration and massive electro‐sintering in thin YSZ ceramics are observed at voltages similar to those in YSZ fuel cells and electrolysis cells. This effect should apply to any electrochemically‐loaded multiphase ionic conducting solid, with or without an electric field, and can lead to electrolyte sintering, phase accumulation and electrode debonding, resulting in unexpected benefit or damage in electrochemical devices. As the velocity obeys a pseudo Stokes‐Einstein equation, inversely proportional to the object size, an especially enhanced size effect is expected in nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.