Abstract-In this paper, we propose an efficient faultrecovery technique for CGRA (Coarse-Grained Reconfigurable Architecture) based multi-core architecture. The proposed technique is intra/inter-CGRA co-reconfiguration technique based on a ringbased sharing fabric (RSF) and it enables exploiting the inherent redundancy and reconfigurability of the multi-CGRA for fault-recovery. Experimental results show that the proposed approaches achieve up to 73% fault recoverability when compared with completely connected fabric (CCF).
<div class="page" title="Page 1"> <div class="layoutArea"> <div class="column"> <p>Recent global warming triggered pronounced geomorphic changes such as coastal retreat and delta progradation along the coastlines of the Arctic regions. Coastal morphodynamics and associated sediment transport at the Arctic fjord head remain relatively unexplored due to the logistically limited accessibility to the field area, especially at short-term temporal scales. A repeat survey using an unmanned aerial vehicle (UAV)-assisted photogrammetry was conducted to quantify the annual morphodynamics of gravel spit complexes developed on the tidal delta plain of the deglaciated Dicksonfjorden, Svalbard of the Arctic. Results show that the spit morpho-dynamics vary in time and space with an overall downfjord increase in the growth and migration rate of the spits. The youngest spits elongated 22 m yr&#8722; 1 and migrated landward 4.3 m yr&#8722; 1 between 2015 and 2019, marking the most pronounced spit morphodynamics documented to date in the Svalbard fjord systems. The spit morphodynamics is driven primarily by longshore drift and, to a lesser degree, by overwash processes. Gravels constituting the spits originate from the unconsolidated debris-flow deposits of old alluvial fans, which locally retreat 0.5 m yr&#8722; 1. The growth of the spit complexes is also fed by snow meltwater discharge on the alluvial fans, accounting for a downfjord imbrication of angular gravel layers that are intercalated with interlaminated sands and muds on the landward sides of the spits. The breached spits at the most upfjord location have remained stationary during the study period and presumably since the 1930s. Rapid delta progradation combined with an isostatic rebound after the Little Ice Age (LIA) has decreased spit morphodynamics on the tidal delta plain upfjord in Dicksonfjorden with infrequent and insignificant wave influence. The sparse distribution of the isolated spits signifies the intermittent spit development, which is constrained by the proximity to the protruded alluvial fans. The spit complexes in Dicksonfjorden highlight that climate change accelerates coastal geomorphic changes at the fjord head by enhancing wave intensity and regulating episodic sediment delivery that led to the downfjord shift in the locus of wave shoaling.</p> </div> </div> </div>
Abstract-CGRA (Coarse-Grained Reconfigurable Architecture) based multi-core architecture can be considered as a suitable solution for the fault-tolerant computing. However, there have been a few research projects based on fault-tolerant CGRA without exploiting the strengths of CGRA as well as their works are limited to single CGRA. Therefore, in this paper, we propose two approaches to enable exploiting the inherent redundancy and reconfigurability of the multi-CGRA for faultrecovery. One is a resilient inter-CGRA fabric that is ring-based sharing fabric (RSF) with minimal interconnection overhead. Another is a novel intra/inter-CGRA reconfiguration technique on RSF for maximizing utilization of the resources when faults occur. Experimental results show that the proposed approaches achieve up to 94% faulty recoverability with reducing area/delay/power by up to 15%/28.6%/31% when compared with completely connected fabric (CCF).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.