Capillary fringe divides the groundwater and the vadose zone controlling the diffusive mass transfer of contaminants and gases. The thickness of capillary fringe is of great importance for the rate of contaminant mass transfer across the capillary fringe. Application of surface active chemicals including surfactants and alcohol-based products into the subsurface environment changes the surface tension of the aqueous phase, which in turn, affects the thickness of the capillary fringe. In this study, a bench-scale model was used to assess the quantitative relationship between the surface tension and the thickness of the capillary fringe. An anionic surfactant (Sodium dodecylbenzene sulfonate, SDBS) and an aqueous solution of ethanol were used to control the surface tension of the groundwater. It was found that the thickness of the capillary fringe is directly proportional to the surface tension. The air entry pressures measured by the Tempe Pressure Cell at different surface tensions using SDBS (200 mg/L) and ethanol (20%, v/v) solutions were in good agreement with the thicknesses of the capillary fringe measured by the model. A simple method to correct the conventional Brooks-Corey model for estimating the air entry pressure was also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.