In semiconductor lasers, quantum well intermixing (QWI) with high selectivity using dielectrics often results in lower quantum efficiency. In this paper, we report on an investigation regarding the effect of thermally induced dielectric stress on the quantum efficiency of quantum well structures in impurity-free vacancy disordering (IFVD) process using photoluminescence and device characterization in conjunction with microscopy. SiO 2 and Si x O 2 /SrF 2 (versus SrF 2) films were employed for the enhancement and suppression of QWI, respectively. Large intermixing selectivity of 75 nm (125 meV), consistent with the theoretical modeling results, with negligible effect on the suppression region characteristics, was obtained. Si x O 2 layer compensates for the large thermal expansion coefficient mismatch of SrF 2 with the semiconductor and mitigates the detrimental effects of SrF 2 without sacrificing its QWI benefits. The bilayer dielectric approach dramatically improved the dielectric-semiconductor interface quality. Fabricated high power semiconductor lasers demonstrated high quantum efficiency in the lasing region using the bilayer dielectric film during the intermixing process. Our results reveal that stress engineering in IFVD is essential and the thermal stress can be controlled by engineering the dielectric strain opening new perspectives for QWI of photonic devices.
Catastrophic optical mirror damage (COMD) is a key issue in semiconductor lasers and it is initiated by facet heating because of optical absorption. To reduce optical absorption, the most promising method is to form non-absorbing mirror structures at the facets by obtaining larger bandgap through impurity-free vacancy disordering (IFVD). To apply an IFVD process while fabricating high-power laser diodes, intermixing window and intermixing suppression regions are needed. Increasing the bandgap difference (ΔE) between these regions improves the laser lifetime. In this report, SrF 2 (versus Si x O 2 /SrF 2 bilayer) and SiO 2 dielectric films are used to suppress and enhance the intermixing, respectively. However, defects are formed during the annealing process of single layer SrF 2 causing detrimental effects on the semiconductor laser performance. As an alternative method, Si x O 2 /S r F 2 bilayer films with a thin Si x O 2 dielectric layer is employed to obtain high epitaxial quality during annealing with small penalty on the suppression effect. We demonstrate record large ΔE of 125 meV. Broad area laser diodes were fabricated by the IFVD process. Fabricated high-power semiconductor lasers demonstrated conservation of quantum efficiency with high intermixing selectivity. The differential quantum efficiencies are 81%, 74%, 66% and 46% for as grown, bilayer protected, SrF 2 protected and QWI lasers, respectively. High power laser diodes using bilayer dielectric films outperformed single-layer based approach in terms of the fundamental operational parameters of lasers. Comparable results obtained for the as-grown and annealed bilayer protected lasers promises a novel method to fabricate high power laser diodes with superior performance and reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.