We introduce Embodied Evolution (EE) as a new methodology for evolutionary robotics (ER). EE uses a population of physical robots that autonomously reproduce with one another while situated in their task environment. This constitutes a fully distributed evolutionary algorithm embodied in physical robots. Several issues identified by researchers in the evolutionary robotics community as problematic for the development of ER are alleviated by the use of a large number of robots being evaluated in parallel. Particularly, EE avoids the pitfalls of the simulate-and-transfer method and allows the speed-up of evaluation time by utilizing parallelism. The more novel features of EE are that the evolutionary algorithm is entirely decentralized, which makes it inherently scalable to large numbers of robots, and that it uses many robots in a shared task environment, which makes it an interesting platform for future work in collective robotics and Artificial Life. We have built a population of eight robots and successfully implemented the first example of Embodied Evolution by designing a fully decentralized, asynchronous evolutionary algorithm. Controllers evolved by EE outperform a hand-designed controller in a simple application. We introduce our approach and its motivations, detail our implementation and initial results, and discuss the advantages and limitations of EE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.