The article is dedicated to the problem of optimization of chain drives of the drilling unit. At present, increasing the power per machine to the optimal limits, reducing the material and energy consumption per unit capacity of the machine, as well as operating costs are considered topical issues. The machines that are designed and constructed to optimal limits must be very powerful and productive. The machines that are applied to perform drilling works in the oil and gas industry must be easy to operate, reliable and have ability to operate for a long time. When constructing such machines, their being lightweight, economical, as well as their preparation in a short time and at low cost should be taken into account in advance. In order to ensure the reliable operation of drilling rigs, it is more expedient to apply chain drive in their mechanical transmission. First of all, the application of chain drive in drilling units and hoisting mechanisms is considered. Then a calculation method was developed for the chain drives of the drilling unit used in deep exploration wells and the exploitation of wells, and, accordingly, the calculation of the chain drive was carried out. The chain drive consists of drive and driven sprockets and a chain that encompasses the sprockets and engages in their teeth. Chain drives with several driven sprockets are also used. In addition to the basic listed elements, chain drives include tensioners, lubricating device and guards. The chain consists of hinged links that provide mobility or “flexibility” of the chain. Chain drives can be performed in a wide range of parameters. The calculation took into account the quality of the material, the service life and durability of the chain drive construction
It is known that a large block of deep-sea foundations consists of a truss sheathed with wood, a metal beam system, floating structures and four pyramidal metal blocks with a truss structure. The design characteristics of the foundations of oil platforms depend on the conditions under which the vertical interaction, along with the calculation of permanent and temporary loads, is accompanied by the specific gravity of drilling equipment and rigs or horizontal wind pressure, as well as the influence of horizontal wave loads on the foundation blocks. Horizontal waves and wind loads can be constant and variable in different conditions, therefore the effect of each of these loads on the device must be considered separately. To determine the wave pressure acting on the support blocks of stationary offshore installations, SN-92-60 was used under the editorship of the team of authors under the leadership of Doctor of Technical Sciences, Professor N.N.Tsunkov.
Keywords: hydraulic structures, wave factor, wave pressure, wave profile, pressure diagrams, 3D model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.