This study investigates some spectral properties of a new type of periodic Sturm-Liouville problem. The problem under consideration differs from the classical ones in that the differential equation is given on two disjoint segments that have a common end, and two additional interaction conditions are imposed on this common end (such interaction conditions are called various names, including transmission conditions, jump conditions, interface conditions, impulsive conditions, etc.). At first, we proved that all eigenvalues are real and there is a corresponding real-valued eigenfunction for each eigenvalue. Then we showed that two eigenfunctions corresponding to different eigenvalues are orthogonal. We also defined some left and right-hand solutions, in terms of which we constructed a new transfer characteristic function. Finally, we have defined asymptotic formulas for the transfer characteristic functions and also for the eigenvalues. The results obtained are a generalization of similar results of the classical Sturm-Liouville theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.