I(n)organocatalysis: Neutral multidentate halogen‐bond donors (halogen‐based Lewis acids) catalyze the reaction of 1‐chloroisochroman with ketene silyl acetals. The organocatalytic activity is linked to the presence (and number as well as orientation) of iodine substituents. As hidden acid catalysis can be ruled out with high probability, this case constitutes strong evidence for halogen‐bond based organocatalysis. TBS=tert‐butyldimethylsilyl.
Using a prototypical Diels-Alder reaction as benchmark, we show that dicationic halogen-bond donors are capable of activating a neutral organic substrate. By various comparison experiments, the action of traces of acid or of other structural features of the halogen-bond donor not related to halogen bonding are excluded with high certainty.
The binding properties of neutral halogen-bond donors (XB donors) bearing two multidentate Lewis acidic motifs toward halides were investigated. Employing polyfluorinated and polyiodinated terphenyl and quaterphenyl derivatives as anion receptors, we obtained X-ray crystallographic data of the adducts of three structurally related XB donors with tetraalkylammonium chloride, bromide, and iodide. The stability of these XB complexes in solution was determined by isothermal titration calorimetry (ITC), and the results were compared to X-ray analyses as well as to calculated binding patterns in the gas phase. Density functional theory (DFT) calculations on the gas-phase complexes indicated that the experimentally observed distortion of the XB donors during multiple multidentate binding can be reproduced in 1:1 complexes with halides, whereas adducts with two halides show a symmetric binding pattern in the gas phase that is markedly different from the solid state structures. Overall, this study demonstrates the limitations in the transferability of binding data between solid state, solution, and gas phase in the study of complex multidentate XB donors.
Halogen bonding is the formation of a non-covalent interaction between an electrophilic halogen substituent and a Lewis base, for instance, a halide. These kinds of relatively weak interactions have found applications in crystal engineering and initial applications in solution-phase chemistry are starting to appear. We report on the exploration of bis(iodoimidazolium) compounds as halogen-based Lewis acids in the activation of glycosyl halides. We show that these dicationic halogen-bond donors can be used to activate glycosyl halides if the carbohydrate core is sufficiently reactive enough. Furthermore, we provide comparison experiments which indicate that the mode of activation is indeed based on halogen bonding. This represents the first glycosylation reaction mediated by a (carbon-backbone-based) halogen-bond donor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.