River reaches downstream dams where a constant residual flow discharge is imposed, often lack sediment supply and periodic inundation due to the absence of natural flood events. In this study, a two-year return flood was released from an upstream reservoir and combined with sediment replenishment to enhance instream habitat conditions downstream of Rossens hydropower dam on the Sarine River in western Switzerland. Sediment replenishment consisted of four sediment deposits distributed as alternate bars along the river banks, a solution which was previously tested in laboratory. The morphological evolution of the replenishment and of the downstream riverbed were surveyed including pre- and post-flood topography. A hydro-morphological index to evaluate the quality of riverine habitats, based on the variability of flow depth and flow velocity in the analyzed reach, was investigated. The combination of the artificial flood with sediment replenishment proved to be a robust measure to supply a river with sediment and to enhance hydraulic habitat suitability.
River reaches downstream of dams with constant residual discharge often lack sediment supply and periodic high flows due to dam sediment retention and flow regulation, respectively. To test a novel multi-deposit methodology for defining environmental flows for activating the dynamics of the river morphology downstream of dams, a flood was released from Rossens Dam in Switzerland. This event was combined for the first time with a multi-deposit configuration of sediment replenishment consisting of four artificial deposits allocated as alternate bars along the riverbanks as a restoration measure. To validate the sediment transport behaviour observed in laboratory tests, stones were equipped with radiofrequency identification (RFID) passive integrated transponder (PIT) tags, a fixed antenna was installed at the river bed and a mobile antenna was used to enable the investigation of the erosion, transport and deposition of replenished sediments. The duration of the erosion period was determined for the tracked stones, and average transport velocities were found to be on the order of 10-3 m/s. To estimate the erosion efficiency of the flood, defined as the eroded tagged stones compared with the released water volume, the hydrograph was divided into different periods: rising limb, constant peak discharge, decreasing limb. During the rising limb of the flood, which lasted for 20% of the total flood duration, more than 40% of the PIT tags were transported. The defined erosion efficiency is a measure to support the hydrographic design of artificial flood releases from dams. The deposition of tagged stones resulted in a repeating cluster formation, as expected from previous laboratory experiments, creating an increase in hydraulic habitat diversity. Comparison of the results obtained in the field and from laboratory experiments confirmed the robustness of the multi-deposit sediment replenishment method. Combined with the knowledge gained on the erosion efficiency, these results could motivate further applications and research into multi-deposit sediment replenishment techniques as a habitat-oriented river restoration measure.
Hydropower is an important pillar of the electricity production in Switzerland and its extension is planned in the next decades. Therefore, a more sustainable management of hydropower plants is needed. Sediment replenishment combined with artificially-triggered flood pulses are gaining increasing interest to restore residual flow reaches. In the Sarine river in Switzerland, such a measure was conducted. Mimicking laboratory experiments for the first time, four deposits, totaling 1000 m3 of sediment, were added to the river downstream of Rossens dam. Some 489 pebbles were equipped with RFID PIT tags and distributed among them. After the flood pulse passed, 57% of the tags were re-located. The maximum detected travel distance of a pebble was 284 m. Some deposits were eroded, while others resisted. Due to a limited submergence, mainly lateral erosion was observed. Nevertheless, erosion of deposits as well as deposition of eroded material in clusters resulted in the same scheme as observed in laboratory experiments which could be validated with this field experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.