Blood-brain barrier (BBB) crossing and brain penetration are really challenging for the delivery of therapeutic agents and imaging probes. The development of new crossing strategies is needed, and a wide range of approaches (invasive or not) have been proposed so far. The receptor-mediated transcytosis is an attractive mechanism, allowing the non-invasive penetration of the BBB. Among available targets, the low-density lipoprotein (LDL) receptor (LDLR) shows favorable characteristics mainly because of the lysosome-bypassed pathway of LDL delivery to the brain, allowing an intact discharge of the carried ligand to the brain targets. The phage display technology was employed to identify a dodecapeptide targeted to the extracellular domain of LDLR (ED-LDLR). This peptide was able to bind the ED-LDLR in the presence of natural ligands and dissociated at acidic pH and in the absence of calcium, in a similar manner as the LDL. In vitro, our peptide was endocytosed by endothelial cells through the caveolae-dependent pathway, proper to the LDLR route in BBB, suggesting the prevention of its lysosomal degradation. The in vivo studies performed by magnetic resonance imaging and fluorescent lifetime imaging suggested the brain penetration of this ED-LDLR-targeted peptide.
The diagnosis of Alzheimer's disease (AD) is a critical step in the management of patients. We have developed a non-invasive diagnosis tool based on magnetic resonance molecular imaging (MRMI) of amyloid-β peptide using ultra-small particles of iron oxide (USPIO) functionalized with a disulfide constrained cyclic heptapeptide (PHO) identified by phage display (USPIO-PHO). After previously demonstrating the optimal pharmacologic properties of USPIO-PHO and its capacity to cross the blood-brain barrier (BBB), the ability of USPIO-PHO to target amyloid plaques (AP) by MRMI has been validated in the present work on AD transgenic mice. The immunohistochemistry and immunofluorescent detection of USPIO-PHO on brain sections collected after in vivo MRMI studies enabled its colocalization with AP, confirming the BBB passage and specific targeting. The AP targeting by USPIO-PHO has been moreover corroborated by the good correlation between the number of AP detected with anti-amyloid β antibody and Perls'-DAB staining. Finally, the crossing mechanism of USPIO-PHO through the BBB was elucidated, revealing the involvement of non-degradation pathway of caveolae, while the control contrast agent USPIO-PEG was not endocytosed by the human brain endothelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.